PDES中共享库的可逆性处理

Davide Cingolani, Alessandro Pellegrini, M. Schordan, F. Quaglia, D. Jefferson
{"title":"PDES中共享库的可逆性处理","authors":"Davide Cingolani, Alessandro Pellegrini, M. Schordan, F. Quaglia, D. Jefferson","doi":"10.1145/3064911.3064927","DOIUrl":null,"url":null,"abstract":"State recoverability is a crucial aspect of speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, we can identify three major classes of techniques to support the correct restoration of a previous simulation state upon the execution of a rollback operation: state checkpointing/restore, manual reverse computation and automatic reverse computation. The latter class has been recently supported by relying either on binary code instrumentation or on source-to-source code transformation. Nevertheless, both solutions are not intrinsically meant to support a reversible execution of third-party shared libraries, which can be pretty useful when implementing complex simulation models. In this paper, we present an architectural solution (realized as a static C library) which allows to transparently instrument at runtime any third party shared library, with no need for any modification to the model's code. We also present a preliminary experimental evaluation, based on the integration of our library with the ROOT-Sim simulation engine.","PeriodicalId":341026,"journal":{"name":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dealing with Reversibility of Shared Libraries in PDES\",\"authors\":\"Davide Cingolani, Alessandro Pellegrini, M. Schordan, F. Quaglia, D. Jefferson\",\"doi\":\"10.1145/3064911.3064927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State recoverability is a crucial aspect of speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, we can identify three major classes of techniques to support the correct restoration of a previous simulation state upon the execution of a rollback operation: state checkpointing/restore, manual reverse computation and automatic reverse computation. The latter class has been recently supported by relying either on binary code instrumentation or on source-to-source code transformation. Nevertheless, both solutions are not intrinsically meant to support a reversible execution of third-party shared libraries, which can be pretty useful when implementing complex simulation models. In this paper, we present an architectural solution (realized as a static C library) which allows to transparently instrument at runtime any third party shared library, with no need for any modification to the model's code. We also present a preliminary experimental evaluation, based on the integration of our library with the ROOT-Sim simulation engine.\",\"PeriodicalId\":341026,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064911.3064927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064911.3064927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

状态可恢复性是基于推测时间扭曲的并行离散事件模拟的一个重要方面。在文献中,我们可以识别出支持在执行回滚操作时正确恢复先前模拟状态的三大类技术:状态检查点/恢复、手动反向计算和自动反向计算。后一类最近通过依赖二进制代码插装或源代码到源代码转换得到了支持。然而,这两种解决方案本质上并不意味着支持第三方共享库的可逆执行,这在实现复杂的仿真模型时可能非常有用。在本文中,我们提出了一个架构解决方案(作为一个静态C库实现),它允许在运行时透明地使用任何第三方共享库,而无需对模型的代码进行任何修改。我们还提出了一个初步的实验评估,基于我们的库与ROOT-Sim仿真引擎的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dealing with Reversibility of Shared Libraries in PDES
State recoverability is a crucial aspect of speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, we can identify three major classes of techniques to support the correct restoration of a previous simulation state upon the execution of a rollback operation: state checkpointing/restore, manual reverse computation and automatic reverse computation. The latter class has been recently supported by relying either on binary code instrumentation or on source-to-source code transformation. Nevertheless, both solutions are not intrinsically meant to support a reversible execution of third-party shared libraries, which can be pretty useful when implementing complex simulation models. In this paper, we present an architectural solution (realized as a static C library) which allows to transparently instrument at runtime any third party shared library, with no need for any modification to the model's code. We also present a preliminary experimental evaluation, based on the integration of our library with the ROOT-Sim simulation engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Paper Session 4 GPU and Hardware Acceleration Lightweight WebSIM Rendering Framework Based on Cloud-Baking Efficient Simulation of Nested Hollow Sphere Intersections: for Dynamically Nested Compartmental Models in Cell Biology Session details: Paper Session 3 Performance Modeling and Simulation Analyzing Emergency Evacuation Strategies for Mass Gatherings using Crowd Simulation And Analysis framework: Hajj Scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1