非高斯时空过程的核谱模型

C. Wikle
{"title":"非高斯时空过程的核谱模型","authors":"C. Wikle","doi":"10.1191/1471082x02st036oa","DOIUrl":null,"url":null,"abstract":"Spatio-temporal processes can often be written as hierarchical state-space processes. In situations with complicated dynamics such as wave propagation, it is difficult to parameterize state transition functions for high-dimensional state processes. Although in some cases prior understanding of the physical process can be used to formulate models for the state transition, this is not always possible. Alternatively, for processes where one considers discrete time and continuous space, complicated dynamics can be modeled by stochastic integro-difference equations in which the associated redistribution kernel is allowed to vary with space and/or time. By considering a spectral implementation of such models, one can formulate a spatio-temporal model with relatively few parameters that can accommodate complicated dynamics. This approach can be developed in a hierarchical framework for non-Gaussian processes, as demonstrated on cloud intensity data.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"A kernel-based spectral model for non-Gaussian spatio-temporal processes\",\"authors\":\"C. Wikle\",\"doi\":\"10.1191/1471082x02st036oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatio-temporal processes can often be written as hierarchical state-space processes. In situations with complicated dynamics such as wave propagation, it is difficult to parameterize state transition functions for high-dimensional state processes. Although in some cases prior understanding of the physical process can be used to formulate models for the state transition, this is not always possible. Alternatively, for processes where one considers discrete time and continuous space, complicated dynamics can be modeled by stochastic integro-difference equations in which the associated redistribution kernel is allowed to vary with space and/or time. By considering a spectral implementation of such models, one can formulate a spatio-temporal model with relatively few parameters that can accommodate complicated dynamics. This approach can be developed in a hierarchical framework for non-Gaussian processes, as demonstrated on cloud intensity data.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082x02st036oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st036oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

时空过程通常可以写成层次化的状态空间过程。在波传播等复杂动力学情况下,高维状态过程的状态转移函数难以参数化。虽然在某些情况下,对物理过程的预先理解可以用来制定状态转换的模型,但这并不总是可能的。另外,对于考虑离散时间和连续空间的过程,复杂的动力学可以通过随机积分差分方程来建模,其中允许相关的再分配核随空间和/或时间变化。通过考虑这些模型的频谱实现,可以用相对较少的参数制定一个时空模型,可以适应复杂的动力学。这种方法可以在非高斯过程的分层框架中开发,如云强度数据所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A kernel-based spectral model for non-Gaussian spatio-temporal processes
Spatio-temporal processes can often be written as hierarchical state-space processes. In situations with complicated dynamics such as wave propagation, it is difficult to parameterize state transition functions for high-dimensional state processes. Although in some cases prior understanding of the physical process can be used to formulate models for the state transition, this is not always possible. Alternatively, for processes where one considers discrete time and continuous space, complicated dynamics can be modeled by stochastic integro-difference equations in which the associated redistribution kernel is allowed to vary with space and/or time. By considering a spectral implementation of such models, one can formulate a spatio-temporal model with relatively few parameters that can accommodate complicated dynamics. This approach can be developed in a hierarchical framework for non-Gaussian processes, as demonstrated on cloud intensity data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1