主动灾难探测

Sreeram K L, Sundharam V M, Bharathwaj G
{"title":"主动灾难探测","authors":"Sreeram K L, Sundharam V M, Bharathwaj G","doi":"10.1109/incet49848.2020.9154174","DOIUrl":null,"url":null,"abstract":"The main concept of this paper is to predict the natural disasters beforehand. With the help of deep learning one can apply statistical models to historical data to predict the future outcomes. With the help of GIS data of tectonic plates and occurred earthquakes we can train a model to predict the future earthquakes and tsunamis. The proposed system helps to predict disasters well in ahead of time which can give suitable time for evacuation and preparation for the disasters.","PeriodicalId":174411,"journal":{"name":"2020 International Conference for Emerging Technology (INCET)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proactive Disaster Detection\",\"authors\":\"Sreeram K L, Sundharam V M, Bharathwaj G\",\"doi\":\"10.1109/incet49848.2020.9154174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main concept of this paper is to predict the natural disasters beforehand. With the help of deep learning one can apply statistical models to historical data to predict the future outcomes. With the help of GIS data of tectonic plates and occurred earthquakes we can train a model to predict the future earthquakes and tsunamis. The proposed system helps to predict disasters well in ahead of time which can give suitable time for evacuation and preparation for the disasters.\",\"PeriodicalId\":174411,\"journal\":{\"name\":\"2020 International Conference for Emerging Technology (INCET)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/incet49848.2020.9154174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/incet49848.2020.9154174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要思想是对自然灾害进行事前预测。在深度学习的帮助下,人们可以将统计模型应用于历史数据来预测未来的结果。利用构造板块和已发生地震的GIS数据,我们可以训练一个预测未来地震和海啸的模型。该系统有助于提前预测灾害,为疏散和防灾准备提供合适的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proactive Disaster Detection
The main concept of this paper is to predict the natural disasters beforehand. With the help of deep learning one can apply statistical models to historical data to predict the future outcomes. With the help of GIS data of tectonic plates and occurred earthquakes we can train a model to predict the future earthquakes and tsunamis. The proposed system helps to predict disasters well in ahead of time which can give suitable time for evacuation and preparation for the disasters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of DC Parameters of Double Gate Tunnel Field Effect Transistor (DG- TFET) for different Gate Dielectrics An Open-source Framework for Robust Portable Cellular Network Efficiency Comparison of Supervised and Unsupervised Classifier on Content Based Classification using Shape, Color, Texture Improved Divorce Prediction Using Machine learning- Particle Swarm Optimization (PSO) Machine Learning Based Synchrophasor Data Analysis for Islanding Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1