基于量子进化算法的结构式过程神经网络设计与应用

Z. Qiang, Li Panchi
{"title":"基于量子进化算法的结构式过程神经网络设计与应用","authors":"Z. Qiang, Li Panchi","doi":"10.1109/ICWAPR.2013.6599306","DOIUrl":null,"url":null,"abstract":"Aiming at the problems that the Structural Formula Process Neural Network (SFPNN) model has more study parameters, compute complexly after orthogonal basis expanding, and is difficult to converge. A quantum evolutionary algorithm is presented based on the quantum theory. The algorithm used the Pauli matrices to establish the axis of rotation, used qubits in Bloch sphere to rotate around the axis method to carry out optimal search, each particle represents three optimal solution to be updated at the same time, using the Hadamard gate achieve individual variability to avoid premature, enhancing the ergodicity of the solution space, expanding the search range of solution space, and approaching global optimal solution faster Taking network traffic and sunspot number prediction as an application, the simulation results show that the algorithm is validity.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and application of Structural Formula Process Neural Network based on quantum evolutionary algorithm\",\"authors\":\"Z. Qiang, Li Panchi\",\"doi\":\"10.1109/ICWAPR.2013.6599306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems that the Structural Formula Process Neural Network (SFPNN) model has more study parameters, compute complexly after orthogonal basis expanding, and is difficult to converge. A quantum evolutionary algorithm is presented based on the quantum theory. The algorithm used the Pauli matrices to establish the axis of rotation, used qubits in Bloch sphere to rotate around the axis method to carry out optimal search, each particle represents three optimal solution to be updated at the same time, using the Hadamard gate achieve individual variability to avoid premature, enhancing the ergodicity of the solution space, expanding the search range of solution space, and approaching global optimal solution faster Taking network traffic and sunspot number prediction as an application, the simulation results show that the algorithm is validity.\",\"PeriodicalId\":236156,\"journal\":{\"name\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2013.6599306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对结构公式过程神经网络(Structural Formula Process Neural Network, SFPNN)模型研究参数多、正交基展开后计算复杂、难以收敛等问题。提出了一种基于量子理论的量子进化算法。该算法利用泡利矩阵建立旋转轴,利用布洛赫球中的量子比特绕轴旋转的方法进行最优搜索,每个粒子代表三个需要同时更新的最优解,利用Hadamard门实现个体可变性,避免了早熟,增强了解空间的遍历性,扩大了解空间的搜索范围。以网络流量和太阳黑子数预测为例,仿真结果表明该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and application of Structural Formula Process Neural Network based on quantum evolutionary algorithm
Aiming at the problems that the Structural Formula Process Neural Network (SFPNN) model has more study parameters, compute complexly after orthogonal basis expanding, and is difficult to converge. A quantum evolutionary algorithm is presented based on the quantum theory. The algorithm used the Pauli matrices to establish the axis of rotation, used qubits in Bloch sphere to rotate around the axis method to carry out optimal search, each particle represents three optimal solution to be updated at the same time, using the Hadamard gate achieve individual variability to avoid premature, enhancing the ergodicity of the solution space, expanding the search range of solution space, and approaching global optimal solution faster Taking network traffic and sunspot number prediction as an application, the simulation results show that the algorithm is validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Super-resolution via K-means sparse coding L2-Boosting-based dictionary learning for super-resolution Classification of power quality disturbances based on independent component analysis and support vector machine Recent developments in perceptual video coding A novel fisher criterion based approach for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1