基于分级相关性评价的卫星图像数据库视觉信息挖掘与排序

Adrian S. Barb, C. Shyu
{"title":"基于分级相关性评价的卫星图像数据库视觉信息挖掘与排序","authors":"Adrian S. Barb, C. Shyu","doi":"10.1109/IGARSS.2010.5650173","DOIUrl":null,"url":null,"abstract":"With recent technological advances, the geospatial industry produces digital image data at an astonishing rate. Such large amounts of data need to be analyzed for visual content in a timely fashion. For in-depth analysis of the geospatial there is a need to find efficient methods to process the visual information into actionable knowledge. One of the most promising methods is to evaluate the relevance of geospatial images to domain-specific visual semantics. Most of existing methods for annotating semantic meaning to geospatial images are trained using binary feedback from users. Such approaches may lead to suboptimal models especially due to the fact that semantic relevance of images is rarely a binary problem. In this paper, we report an algorithm to link low-level image features with high-level visual semantics using graded relevance feedback from image analysts. This linkage is done using flexible possibility functions that mathematically model the existence of visual semantics in new images added to the database. Our experimental results show that our technique improves the knowledge discovery process as evidenced by increased mean average precision of semantic queries.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Visual information mining and ranking using graded relevance assessments in satellite image databases\",\"authors\":\"Adrian S. Barb, C. Shyu\",\"doi\":\"10.1109/IGARSS.2010.5650173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent technological advances, the geospatial industry produces digital image data at an astonishing rate. Such large amounts of data need to be analyzed for visual content in a timely fashion. For in-depth analysis of the geospatial there is a need to find efficient methods to process the visual information into actionable knowledge. One of the most promising methods is to evaluate the relevance of geospatial images to domain-specific visual semantics. Most of existing methods for annotating semantic meaning to geospatial images are trained using binary feedback from users. Such approaches may lead to suboptimal models especially due to the fact that semantic relevance of images is rarely a binary problem. In this paper, we report an algorithm to link low-level image features with high-level visual semantics using graded relevance feedback from image analysts. This linkage is done using flexible possibility functions that mathematically model the existence of visual semantics in new images added to the database. Our experimental results show that our technique improves the knowledge discovery process as evidenced by increased mean average precision of semantic queries.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5650173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5650173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着最近技术的进步,地理空间行业以惊人的速度产生数字图像数据。如此大量的数据需要及时分析可视化内容。为了对地理空间进行深入分析,需要找到有效的方法将视觉信息转化为可操作的知识。最有前途的方法之一是评估地理空间图像与特定领域视觉语义的相关性。现有的地理空间图像语义标注方法大多是利用用户的二值反馈进行训练的。这种方法可能会导致次优模型,特别是由于图像的语义相关性很少是一个二进制问题。在本文中,我们报告了一种利用图像分析人员的分级相关反馈将低级图像特征与高级视觉语义联系起来的算法。这种联系是使用灵活的可能性函数来完成的,这些可能性函数在数学上对添加到数据库中的新图像中的视觉语义的存在性进行建模。实验结果表明,我们的技术改善了知识发现过程,提高了语义查询的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual information mining and ranking using graded relevance assessments in satellite image databases
With recent technological advances, the geospatial industry produces digital image data at an astonishing rate. Such large amounts of data need to be analyzed for visual content in a timely fashion. For in-depth analysis of the geospatial there is a need to find efficient methods to process the visual information into actionable knowledge. One of the most promising methods is to evaluate the relevance of geospatial images to domain-specific visual semantics. Most of existing methods for annotating semantic meaning to geospatial images are trained using binary feedback from users. Such approaches may lead to suboptimal models especially due to the fact that semantic relevance of images is rarely a binary problem. In this paper, we report an algorithm to link low-level image features with high-level visual semantics using graded relevance feedback from image analysts. This linkage is done using flexible possibility functions that mathematically model the existence of visual semantics in new images added to the database. Our experimental results show that our technique improves the knowledge discovery process as evidenced by increased mean average precision of semantic queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One micron laser technology advancements at GSFC Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data The microasar experiment on CASIE-09 A method to estimate Snow Water Equivalent using multi-angle X-band radar observations Detection and correction of spectral and spatial misregistrations for hyperspectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1