Alexandru-Ciprian Zavoianu, E. Lughofer, G. Bramerdorfer, W. Amrhein, E. Klement
{"title":"基于集成的多目标进化算法动态代理适应度函数生成方法","authors":"Alexandru-Ciprian Zavoianu, E. Lughofer, G. Bramerdorfer, W. Amrhein, E. Klement","doi":"10.1109/SYNASC.2013.38","DOIUrl":null,"url":null,"abstract":"The task of designing electrical drives is a multi-objective optimization problem (MOOP) that remains very slow even when using state-of-the-art approaches like particle swarm optimization and evolutionary algorithms because the fitness function used to assess the quality of a proposed design is based on time-intensive finite element (FE) simulations. One straightforward solution is to replace the original FE-based fitness function with a much faster-to-evaluate surrogate. In our particular case each optimization scenario poses rather unique challenges (i.e., goals and constraints) and the surrogate models need to be constructed on-the-fly, automatically, during the run of the evolutionary algorithm. In the present research, using three industrial MOOPs, we investigated several approaches for creating such surrogate models and discovered that a strategy that uses ensembles of multi-layer perceptron neural networks and Pareto-trimmed training sets is able to produce very high quality surrogate models in a relatively short time interval.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Effective Ensemble-Based Method for Creating On-the-Fly Surrogate Fitness Functions for Multi-objective Evolutionary Algorithms\",\"authors\":\"Alexandru-Ciprian Zavoianu, E. Lughofer, G. Bramerdorfer, W. Amrhein, E. Klement\",\"doi\":\"10.1109/SYNASC.2013.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of designing electrical drives is a multi-objective optimization problem (MOOP) that remains very slow even when using state-of-the-art approaches like particle swarm optimization and evolutionary algorithms because the fitness function used to assess the quality of a proposed design is based on time-intensive finite element (FE) simulations. One straightforward solution is to replace the original FE-based fitness function with a much faster-to-evaluate surrogate. In our particular case each optimization scenario poses rather unique challenges (i.e., goals and constraints) and the surrogate models need to be constructed on-the-fly, automatically, during the run of the evolutionary algorithm. In the present research, using three industrial MOOPs, we investigated several approaches for creating such surrogate models and discovered that a strategy that uses ensembles of multi-layer perceptron neural networks and Pareto-trimmed training sets is able to produce very high quality surrogate models in a relatively short time interval.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Effective Ensemble-Based Method for Creating On-the-Fly Surrogate Fitness Functions for Multi-objective Evolutionary Algorithms
The task of designing electrical drives is a multi-objective optimization problem (MOOP) that remains very slow even when using state-of-the-art approaches like particle swarm optimization and evolutionary algorithms because the fitness function used to assess the quality of a proposed design is based on time-intensive finite element (FE) simulations. One straightforward solution is to replace the original FE-based fitness function with a much faster-to-evaluate surrogate. In our particular case each optimization scenario poses rather unique challenges (i.e., goals and constraints) and the surrogate models need to be constructed on-the-fly, automatically, during the run of the evolutionary algorithm. In the present research, using three industrial MOOPs, we investigated several approaches for creating such surrogate models and discovered that a strategy that uses ensembles of multi-layer perceptron neural networks and Pareto-trimmed training sets is able to produce very high quality surrogate models in a relatively short time interval.