时延最优CNN推理层融合的体系结构感知优化

Minyong Yoon, Jungwook Choi
{"title":"时延最优CNN推理层融合的体系结构感知优化","authors":"Minyong Yoon, Jungwook Choi","doi":"10.1109/AICAS57966.2023.10168659","DOIUrl":null,"url":null,"abstract":"Layer fusion is an effective technique for accelerating latency-sensitive CNN inference tasks on resource-constrained accelerators that exploit distributed on-chip integrated memory-accelerator processing-in memory (PIM). However, previous research primarily focused on optimizing memory access, neglecting the significant impact of hardware architecture on latency. This study presents an analytical latency model for a 2D systolic array accelerator, taking into account various hardware factors such as array dimensions, buffer size, and bandwidth. We then investigate the influence of hardware architecture and fusion strategies, including weight and overlap reuse, on performance; these aspects are insufficiently addressed in existing access-based fusion models. By incorporating layer fusion with our proposed latency model across different architectures, dataflows, and workloads, we achieve up to a 53.1% reduction in end-to-end network latency compared to an access-based model.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecture-Aware Optimization of Layer Fusion for Latency-Optimal CNN Inference\",\"authors\":\"Minyong Yoon, Jungwook Choi\",\"doi\":\"10.1109/AICAS57966.2023.10168659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layer fusion is an effective technique for accelerating latency-sensitive CNN inference tasks on resource-constrained accelerators that exploit distributed on-chip integrated memory-accelerator processing-in memory (PIM). However, previous research primarily focused on optimizing memory access, neglecting the significant impact of hardware architecture on latency. This study presents an analytical latency model for a 2D systolic array accelerator, taking into account various hardware factors such as array dimensions, buffer size, and bandwidth. We then investigate the influence of hardware architecture and fusion strategies, including weight and overlap reuse, on performance; these aspects are insufficiently addressed in existing access-based fusion models. By incorporating layer fusion with our proposed latency model across different architectures, dataflows, and workloads, we achieve up to a 53.1% reduction in end-to-end network latency compared to an access-based model.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层融合是一种在资源受限的加速器上加速延迟敏感的CNN推理任务的有效技术,它利用了分布式片上集成存储器-加速器处理内存(PIM)。然而,以往的研究主要集中在优化内存访问,而忽略了硬件架构对延迟的重要影响。本研究提出了一个二维收缩阵列加速器的分析延迟模型,考虑了各种硬件因素,如阵列尺寸、缓冲区大小和带宽。然后,我们研究了硬件架构和融合策略(包括权重和重叠重用)对性能的影响;这些方面在现有的基于访问的融合模型中没有得到充分的解决。通过将层融合与我们提出的跨不同架构、数据流和工作负载的延迟模型相结合,与基于访问的模型相比,我们实现了端到端网络延迟减少53.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture-Aware Optimization of Layer Fusion for Latency-Optimal CNN Inference
Layer fusion is an effective technique for accelerating latency-sensitive CNN inference tasks on resource-constrained accelerators that exploit distributed on-chip integrated memory-accelerator processing-in memory (PIM). However, previous research primarily focused on optimizing memory access, neglecting the significant impact of hardware architecture on latency. This study presents an analytical latency model for a 2D systolic array accelerator, taking into account various hardware factors such as array dimensions, buffer size, and bandwidth. We then investigate the influence of hardware architecture and fusion strategies, including weight and overlap reuse, on performance; these aspects are insufficiently addressed in existing access-based fusion models. By incorporating layer fusion with our proposed latency model across different architectures, dataflows, and workloads, we achieve up to a 53.1% reduction in end-to-end network latency compared to an access-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1