一种基于lbs的时间约束调度推荐算法

IEEE WISA Pub Date : 1900-01-01 DOI:10.1109/WISA.2015.17
Yuxiang Cai, Zhibin Zhao, Lan Yao, Y. Bao
{"title":"一种基于lbs的时间约束调度推荐算法","authors":"Yuxiang Cai, Zhibin Zhao, Lan Yao, Y. Bao","doi":"10.1109/WISA.2015.17","DOIUrl":null,"url":null,"abstract":"Recently, Point of Interest Recommendation is widely used in LBS navigation systems. It makes use of the real-time GPS locations of users as well as their preferences to recommend POIs that mostly match these preferences and the paths leading to the POIs. Previous studies are focused on the following two issues: (1) Similarity measurement between POIs and the user preferences, and (2) Optimum path selection from the user location to the recommended POIs. However in most scenarios, users need not only some isolated POIs, but a combination of several POIs that covers the user preferences as well as the paths connecting them. Essentially, it is the schedule planning problem. Schedule planning is usually with strict time limits, and equivalent to Generalized Traveling Sales Man Problem (GTSP) which was proved a NP-hard problem. This imposes great challenge to its solution. In this paper, we formalize the problem of Schedule Planning with strict Time Constraint (SPwTC). Especially, we wrap the static paths between POIs into route activities, thus a globally unified model of user activity can be defined. Based on Genetic Algorithm, we propose the schedule recommendation algorithm to generate candidate route plans. Subsequently, we propose the recommendation function for sorting the recommended schedule plans so as to make the recommended result more in line with user expectation. At the end of this paper, we verify the efficiency of the algorithm as well as its rationality of the recommended result with real road network data.","PeriodicalId":178339,"journal":{"name":"IEEE WISA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm for LBS-based Schedule Recommendation with Time Constraint\",\"authors\":\"Yuxiang Cai, Zhibin Zhao, Lan Yao, Y. Bao\",\"doi\":\"10.1109/WISA.2015.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Point of Interest Recommendation is widely used in LBS navigation systems. It makes use of the real-time GPS locations of users as well as their preferences to recommend POIs that mostly match these preferences and the paths leading to the POIs. Previous studies are focused on the following two issues: (1) Similarity measurement between POIs and the user preferences, and (2) Optimum path selection from the user location to the recommended POIs. However in most scenarios, users need not only some isolated POIs, but a combination of several POIs that covers the user preferences as well as the paths connecting them. Essentially, it is the schedule planning problem. Schedule planning is usually with strict time limits, and equivalent to Generalized Traveling Sales Man Problem (GTSP) which was proved a NP-hard problem. This imposes great challenge to its solution. In this paper, we formalize the problem of Schedule Planning with strict Time Constraint (SPwTC). Especially, we wrap the static paths between POIs into route activities, thus a globally unified model of user activity can be defined. Based on Genetic Algorithm, we propose the schedule recommendation algorithm to generate candidate route plans. Subsequently, we propose the recommendation function for sorting the recommended schedule plans so as to make the recommended result more in line with user expectation. At the end of this paper, we verify the efficiency of the algorithm as well as its rationality of the recommended result with real road network data.\",\"PeriodicalId\":178339,\"journal\":{\"name\":\"IEEE WISA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE WISA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2015.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE WISA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Algorithm for LBS-based Schedule Recommendation with Time Constraint
Recently, Point of Interest Recommendation is widely used in LBS navigation systems. It makes use of the real-time GPS locations of users as well as their preferences to recommend POIs that mostly match these preferences and the paths leading to the POIs. Previous studies are focused on the following two issues: (1) Similarity measurement between POIs and the user preferences, and (2) Optimum path selection from the user location to the recommended POIs. However in most scenarios, users need not only some isolated POIs, but a combination of several POIs that covers the user preferences as well as the paths connecting them. Essentially, it is the schedule planning problem. Schedule planning is usually with strict time limits, and equivalent to Generalized Traveling Sales Man Problem (GTSP) which was proved a NP-hard problem. This imposes great challenge to its solution. In this paper, we formalize the problem of Schedule Planning with strict Time Constraint (SPwTC). Especially, we wrap the static paths between POIs into route activities, thus a globally unified model of user activity can be defined. Based on Genetic Algorithm, we propose the schedule recommendation algorithm to generate candidate route plans. Subsequently, we propose the recommendation function for sorting the recommended schedule plans so as to make the recommended result more in line with user expectation. At the end of this paper, we verify the efficiency of the algorithm as well as its rationality of the recommended result with real road network data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instant Traveling Companion Discovery Based on Traffic-Monitoring Streaming Data Ontology-Based Skills Knowledge Base Construction Method and Its Application in Educational Games A Decision Tree Algorithm Based on Dispersion Measure of Attribute Information 5WTAG: Detecting the Topics of Chinese Microblogs Based on 5W Model A Unified Attribute Based Role Similarity Measure in Information Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1