{"title":"无所不在的多功能移动卫星全ip over DVB-S网络技术","authors":"A. Markhasin","doi":"10.1109/IWSSC.2007.4409398","DOIUrl":null,"url":null,"abstract":"The recent broadband satellite systems are based mainly on centralized low-meshed architecture. It predetermines very high traffics concentration. Such structure is not adequate in context of the traffic topology for rural, remote, and difficult for access (RRD) regions. Therefore the cost of these systems is unacceptably large for deployment of future mass broadband communications in RRD regions, which are characterized by poor terrestrial core infrastructures. This paper presents a novel concept of the space-based cost-effective networking technology of future 4G communications with radically distributed (grid-like), mesh, and scalable all-IP/ATM integrated satellite/mobile/wireless architecture for RRD areas. The proposed architecture based on novel QoS-oriented multi-functional access control technology to long-delay space medium (MFMAC), and also on MFMAC-based next generations of wireless ATM (ATM- MFMAC) and multi-protocol label switching (MPLS-MFMAC) technologies. This networking technology will allow an effective support and integration of mobile satellite and terrestrial cellullar, personal, WLAN, WiFi, WiMax, and other wireless systems of future generations 4G for such RRD territories, as BRIC (Brasilia, Russia, India, and China), Sea and Ocean's Archipelago, North Canada, Alaska, Central and South-East Asia, South America, Africa, Australia, etc.","PeriodicalId":286578,"journal":{"name":"2007 International Workshop on Satellite and Space Communications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ubiquitous and Multifunctional Mobile Satellite all-IP over DVB-S Networking Technology 4G with Radically Distributed Architecture for RRD Regions\",\"authors\":\"A. Markhasin\",\"doi\":\"10.1109/IWSSC.2007.4409398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent broadband satellite systems are based mainly on centralized low-meshed architecture. It predetermines very high traffics concentration. Such structure is not adequate in context of the traffic topology for rural, remote, and difficult for access (RRD) regions. Therefore the cost of these systems is unacceptably large for deployment of future mass broadband communications in RRD regions, which are characterized by poor terrestrial core infrastructures. This paper presents a novel concept of the space-based cost-effective networking technology of future 4G communications with radically distributed (grid-like), mesh, and scalable all-IP/ATM integrated satellite/mobile/wireless architecture for RRD areas. The proposed architecture based on novel QoS-oriented multi-functional access control technology to long-delay space medium (MFMAC), and also on MFMAC-based next generations of wireless ATM (ATM- MFMAC) and multi-protocol label switching (MPLS-MFMAC) technologies. This networking technology will allow an effective support and integration of mobile satellite and terrestrial cellullar, personal, WLAN, WiFi, WiMax, and other wireless systems of future generations 4G for such RRD territories, as BRIC (Brasilia, Russia, India, and China), Sea and Ocean's Archipelago, North Canada, Alaska, Central and South-East Asia, South America, Africa, Australia, etc.\",\"PeriodicalId\":286578,\"journal\":{\"name\":\"2007 International Workshop on Satellite and Space Communications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Workshop on Satellite and Space Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSC.2007.4409398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Workshop on Satellite and Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSC.2007.4409398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ubiquitous and Multifunctional Mobile Satellite all-IP over DVB-S Networking Technology 4G with Radically Distributed Architecture for RRD Regions
The recent broadband satellite systems are based mainly on centralized low-meshed architecture. It predetermines very high traffics concentration. Such structure is not adequate in context of the traffic topology for rural, remote, and difficult for access (RRD) regions. Therefore the cost of these systems is unacceptably large for deployment of future mass broadband communications in RRD regions, which are characterized by poor terrestrial core infrastructures. This paper presents a novel concept of the space-based cost-effective networking technology of future 4G communications with radically distributed (grid-like), mesh, and scalable all-IP/ATM integrated satellite/mobile/wireless architecture for RRD areas. The proposed architecture based on novel QoS-oriented multi-functional access control technology to long-delay space medium (MFMAC), and also on MFMAC-based next generations of wireless ATM (ATM- MFMAC) and multi-protocol label switching (MPLS-MFMAC) technologies. This networking technology will allow an effective support and integration of mobile satellite and terrestrial cellullar, personal, WLAN, WiFi, WiMax, and other wireless systems of future generations 4G for such RRD territories, as BRIC (Brasilia, Russia, India, and China), Sea and Ocean's Archipelago, North Canada, Alaska, Central and South-East Asia, South America, Africa, Australia, etc.