IEEA '18 Pub Date : 2018-03-28 DOI:10.1145/3208854.3208893
Senhao Wen, Yu Rao, Hanbing Yan
{"title":"Information Protecting against APT Based on the Study of Cyber Kill Chain with Weighted Bayesian Classification with Correction Factor","authors":"Senhao Wen, Yu Rao, Hanbing Yan","doi":"10.1145/3208854.3208893","DOIUrl":null,"url":null,"abstract":"To avoid being discovered by the defenders of a target, APT attackers are using encrypted communication to hide communication features, using code obfuscation and file-less technology to avoid malicious code being easily reversed and leaking out its internal working mechanism, and using misleading content to conceal their identities. And it is clearly ineffective to detect APT attacks by relying on one single technology. All of these tough situation make information security and privacy protection face increasingly serious threats. In this paper, through a deep study of Cyber Kill Chain behaviors, combining with intelligence analysis technology, we transform APT detecting problem to be a measurable mathematical problem through weighted Bayesian classification with correction factor so as to detect APTs and perceive threats. In the solution, we adopted intelligence acquisition technology from massive data, and TFIDF algorithm for calculate attack behavior's weight. Also we designed a correction factor to improve the Markov Weighted Bayesian Model with multiple behaviors being detected by modifying the value of the probability of APT attack.","PeriodicalId":365707,"journal":{"name":"IEEA '18","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEA '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208854.3208893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了不被目标防御者发现,APT攻击者使用加密通信来隐藏通信特征,使用代码混淆和无文件技术来避免恶意代码容易被逆转和泄露其内部工作机制,使用误导性内容来隐藏其身份。依靠单一技术来检测APT攻击显然是无效的。这些严峻的形势使得信息安全和隐私保护面临越来越严重的威胁。本文通过对网络杀伤链行为的深入研究,结合情报分析技术,通过带校正因子的加权贝叶斯分类,将APT检测问题转化为可测量的数学问题,从而检测APT,感知威胁。在解决方案中,我们采用了海量数据的智能获取技术,并使用TFIDF算法计算攻击行为的权重。通过修改APT攻击的概率值,设计了一个修正因子来改进检测到多种行为的马尔可夫加权贝叶斯模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information Protecting against APT Based on the Study of Cyber Kill Chain with Weighted Bayesian Classification with Correction Factor
To avoid being discovered by the defenders of a target, APT attackers are using encrypted communication to hide communication features, using code obfuscation and file-less technology to avoid malicious code being easily reversed and leaking out its internal working mechanism, and using misleading content to conceal their identities. And it is clearly ineffective to detect APT attacks by relying on one single technology. All of these tough situation make information security and privacy protection face increasingly serious threats. In this paper, through a deep study of Cyber Kill Chain behaviors, combining with intelligence analysis technology, we transform APT detecting problem to be a measurable mathematical problem through weighted Bayesian classification with correction factor so as to detect APTs and perceive threats. In the solution, we adopted intelligence acquisition technology from massive data, and TFIDF algorithm for calculate attack behavior's weight. Also we designed a correction factor to improve the Markov Weighted Bayesian Model with multiple behaviors being detected by modifying the value of the probability of APT attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pretreatment Optimization of Cholinium Ionic Liquid for Maximizing Sugar Release from Rice Straw Analyzing the Stability of a High-Fill Slope based on Spatial Survey Information The Blocking Factors and Solution Countermeasures in Policy Implementation of New Energy Vehicle Design and Implementation of Automatic Question Answering System in Information Retrieval An Architecture for the Integration of Different Functional and Structural Plant Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1