一种新的径向基函数神经网络

Jianchuan Yin, Jiangqiang Hu, R. Bu
{"title":"一种新的径向基函数神经网络","authors":"Jianchuan Yin, Jiangqiang Hu, R. Bu","doi":"10.1109/CCDC.2009.5192355","DOIUrl":null,"url":null,"abstract":"Single-hidden-layer feedforward networks (SLFNs) with radial basis function (RBF) hidden nodes are universal approximators when all the parameters of the networks are allowed adjustable. The learning speed of SLFNs is in general far slower than required and it has been a major bottleneck in their applications for past decades) Huang et al. propose a new learning algorithm called extreme learning machine (ELM) for SLFNs which randomly chooses hidden nodes and analytically determines the output weights. In this paper, common choices of RBF for generating ELM are analyzed and compared. The purpose of this study is to explore comparative strengths and weaknesses of the choices and to show some useful guidelines on how to choose an appropriate RBF hidden nodes for a particular problem.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel reformulated radial basis function neural network\",\"authors\":\"Jianchuan Yin, Jiangqiang Hu, R. Bu\",\"doi\":\"10.1109/CCDC.2009.5192355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-hidden-layer feedforward networks (SLFNs) with radial basis function (RBF) hidden nodes are universal approximators when all the parameters of the networks are allowed adjustable. The learning speed of SLFNs is in general far slower than required and it has been a major bottleneck in their applications for past decades) Huang et al. propose a new learning algorithm called extreme learning machine (ELM) for SLFNs which randomly chooses hidden nodes and analytically determines the output weights. In this paper, common choices of RBF for generating ELM are analyzed and compared. The purpose of this study is to explore comparative strengths and weaknesses of the choices and to show some useful guidelines on how to choose an appropriate RBF hidden nodes for a particular problem.\",\"PeriodicalId\":127110,\"journal\":{\"name\":\"2009 Chinese Control and Decision Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2009.5192355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5192355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有径向基函数(RBF)隐节点的单隐层前馈网络在所有参数可调的情况下是一种通用逼近器。slfn的学习速度通常远低于要求,这在过去几十年里一直是其应用的主要瓶颈。Huang等人提出了一种新的学习算法,称为极限学习机(ELM),用于slfn随机选择隐藏节点并解析确定输出权重。本文对生成ELM的常用RBF方法进行了分析和比较。本研究的目的是探讨选择的比较优势和劣势,并展示一些关于如何为特定问题选择适当的RBF隐藏节点的有用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel reformulated radial basis function neural network
Single-hidden-layer feedforward networks (SLFNs) with radial basis function (RBF) hidden nodes are universal approximators when all the parameters of the networks are allowed adjustable. The learning speed of SLFNs is in general far slower than required and it has been a major bottleneck in their applications for past decades) Huang et al. propose a new learning algorithm called extreme learning machine (ELM) for SLFNs which randomly chooses hidden nodes and analytically determines the output weights. In this paper, common choices of RBF for generating ELM are analyzed and compared. The purpose of this study is to explore comparative strengths and weaknesses of the choices and to show some useful guidelines on how to choose an appropriate RBF hidden nodes for a particular problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Observer-based H∞ control for discrete-time T-S fuzzy systems Soft sensor for distillation column feeds Design of temperature measure system for variable sensitive temperature range Wavelet neural network based fault diagnosis of asynchronous motor Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1