{"title":"基于k均值聚类的自动稳压器智能控制","authors":"B. Abegaz, J. Kueber","doi":"10.1109/SYSOSE.2019.8753873","DOIUrl":null,"url":null,"abstract":"The future cyber physical systems consist of voltage regulators distributed across wide geographical areas. In this paper, a smart control approach of voltage regulators is presented for cyber physical system applications. The approach is implemented using K-means clustering algorithms that use data from voltage and current sensors, compute the correlation of changes across the regulators and generate a proportional feedback. Advanced estimation methods are used in cases where the data from the sensors was not available. The results show that the approach could be used to improve the performance of networked, power dependent systems by 94.5% in terms of overshoot and 9.52% in terms of response time as compared to other methods of controlling voltage regulators.","PeriodicalId":133413,"journal":{"name":"2019 14th Annual Conference System of Systems Engineering (SoSE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smart Control of Automatic Voltage Regulators using K-means Clustering\",\"authors\":\"B. Abegaz, J. Kueber\",\"doi\":\"10.1109/SYSOSE.2019.8753873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future cyber physical systems consist of voltage regulators distributed across wide geographical areas. In this paper, a smart control approach of voltage regulators is presented for cyber physical system applications. The approach is implemented using K-means clustering algorithms that use data from voltage and current sensors, compute the correlation of changes across the regulators and generate a proportional feedback. Advanced estimation methods are used in cases where the data from the sensors was not available. The results show that the approach could be used to improve the performance of networked, power dependent systems by 94.5% in terms of overshoot and 9.52% in terms of response time as compared to other methods of controlling voltage regulators.\",\"PeriodicalId\":133413,\"journal\":{\"name\":\"2019 14th Annual Conference System of Systems Engineering (SoSE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th Annual Conference System of Systems Engineering (SoSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSOSE.2019.8753873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Annual Conference System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2019.8753873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart Control of Automatic Voltage Regulators using K-means Clustering
The future cyber physical systems consist of voltage regulators distributed across wide geographical areas. In this paper, a smart control approach of voltage regulators is presented for cyber physical system applications. The approach is implemented using K-means clustering algorithms that use data from voltage and current sensors, compute the correlation of changes across the regulators and generate a proportional feedback. Advanced estimation methods are used in cases where the data from the sensors was not available. The results show that the approach could be used to improve the performance of networked, power dependent systems by 94.5% in terms of overshoot and 9.52% in terms of response time as compared to other methods of controlling voltage regulators.