{"title":"近似退相干的意义","authors":"G. Bacciagaluppi, M. Hemmo","doi":"10.1086/psaprocbienmeetp.1994.1.193039","DOIUrl":null,"url":null,"abstract":"In realistic situations where a macroscopic system interacts with an external environment, decoherence of the quantum state, as derived in the decoherence approach, is only approximate. We argue that this can still give rise to facts, provided that during the decoherence process states that are, respectively, always close to eigenvectors of pointer position and record observable are correlated. We show in a model that this is always the case.","PeriodicalId":288090,"journal":{"name":"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Making Sense of Approximate Decoherence\",\"authors\":\"G. Bacciagaluppi, M. Hemmo\",\"doi\":\"10.1086/psaprocbienmeetp.1994.1.193039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In realistic situations where a macroscopic system interacts with an external environment, decoherence of the quantum state, as derived in the decoherence approach, is only approximate. We argue that this can still give rise to facts, provided that during the decoherence process states that are, respectively, always close to eigenvectors of pointer position and record observable are correlated. We show in a model that this is always the case.\",\"PeriodicalId\":288090,\"journal\":{\"name\":\"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/psaprocbienmeetp.1994.1.193039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/psaprocbienmeetp.1994.1.193039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In realistic situations where a macroscopic system interacts with an external environment, decoherence of the quantum state, as derived in the decoherence approach, is only approximate. We argue that this can still give rise to facts, provided that during the decoherence process states that are, respectively, always close to eigenvectors of pointer position and record observable are correlated. We show in a model that this is always the case.