基于肌电信号的体机接口线性与非线性映射

C. Pierella, A. Sciacchitano, Ali Farshchiansadegh, M. Casadio, F. Mussa-Ivaldi
{"title":"基于肌电信号的体机接口线性与非线性映射","authors":"C. Pierella, A. Sciacchitano, Ali Farshchiansadegh, M. Casadio, F. Mussa-Ivaldi","doi":"10.1109/BIOROB.2018.8487185","DOIUrl":null,"url":null,"abstract":"The human machine interface (HMI) refers to a paradigm in which the users interact with external devices through an interface that mediates the information exchanges between them and the device. In this work we focused on a HMI that exploits signals derived from the body to control the machine: the body machine interface (BMI). It is reasonable to assume that signals derived from body movements, electromyography activity, as well as brain activity, have a non-linear nature. This implies that linear algorithms cannot exploit all the information contained in these signals. In this work we proposed a new BMI that maps electromyographic signals into the control of a computer cursor by using a new non-linear dimensionality reduction algorithm based on autoassociative neural network. We tested the system on a group of ten healthy subjects that, controlling this cursor, performed a reaching task. We compared the result with the performance of an age and gender matched group of healthy subjects that solved the same task using a BMI based on a linear mapping. The analysis of the performance indices showed a substantial difference between the two groups. In particular, the performance of the people using the non-linear mapping were better in terms of time, accuracy and smoothness of the cursor's movement. This study opened the way to the exploitation of non-linear dimensionality reduction algorithms to pursue a new and effective clinical approach for body-machine interfaces.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Linear vs Non-Linear Mapping in a Body Machine Interface Based on Electromyographic Signals\",\"authors\":\"C. Pierella, A. Sciacchitano, Ali Farshchiansadegh, M. Casadio, F. Mussa-Ivaldi\",\"doi\":\"10.1109/BIOROB.2018.8487185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human machine interface (HMI) refers to a paradigm in which the users interact with external devices through an interface that mediates the information exchanges between them and the device. In this work we focused on a HMI that exploits signals derived from the body to control the machine: the body machine interface (BMI). It is reasonable to assume that signals derived from body movements, electromyography activity, as well as brain activity, have a non-linear nature. This implies that linear algorithms cannot exploit all the information contained in these signals. In this work we proposed a new BMI that maps electromyographic signals into the control of a computer cursor by using a new non-linear dimensionality reduction algorithm based on autoassociative neural network. We tested the system on a group of ten healthy subjects that, controlling this cursor, performed a reaching task. We compared the result with the performance of an age and gender matched group of healthy subjects that solved the same task using a BMI based on a linear mapping. The analysis of the performance indices showed a substantial difference between the two groups. In particular, the performance of the people using the non-linear mapping were better in terms of time, accuracy and smoothness of the cursor's movement. This study opened the way to the exploitation of non-linear dimensionality reduction algorithms to pursue a new and effective clinical approach for body-machine interfaces.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人机界面(HMI)是指用户通过一个接口与外部设备进行交互的一种范例,该接口调解用户与设备之间的信息交换。在这项工作中,我们专注于利用来自身体的信号来控制机器的HMI:身体机器接口(BMI)。我们可以合理地假设,来自身体运动、肌电活动以及大脑活动的信号具有非线性性质。这意味着线性算法不能利用这些信号中包含的所有信息。在这项工作中,我们提出了一种新的BMI,通过使用基于自关联神经网络的新的非线性降维算法,将肌电信号映射到计算机光标的控制中。我们在一组10名健康受试者身上测试了这个系统,他们通过控制这个光标来执行一个触摸任务。我们将结果与一组年龄和性别匹配的健康受试者的表现进行了比较,他们使用基于线性映射的BMI来解决相同的任务。绩效指标分析显示,两组之间存在显著差异。特别是,使用非线性映射的人在光标移动的时间、准确性和平滑度方面表现更好。本研究为利用非线性降维算法寻求一种新的有效的身体-机器界面临床方法开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear vs Non-Linear Mapping in a Body Machine Interface Based on Electromyographic Signals
The human machine interface (HMI) refers to a paradigm in which the users interact with external devices through an interface that mediates the information exchanges between them and the device. In this work we focused on a HMI that exploits signals derived from the body to control the machine: the body machine interface (BMI). It is reasonable to assume that signals derived from body movements, electromyography activity, as well as brain activity, have a non-linear nature. This implies that linear algorithms cannot exploit all the information contained in these signals. In this work we proposed a new BMI that maps electromyographic signals into the control of a computer cursor by using a new non-linear dimensionality reduction algorithm based on autoassociative neural network. We tested the system on a group of ten healthy subjects that, controlling this cursor, performed a reaching task. We compared the result with the performance of an age and gender matched group of healthy subjects that solved the same task using a BMI based on a linear mapping. The analysis of the performance indices showed a substantial difference between the two groups. In particular, the performance of the people using the non-linear mapping were better in terms of time, accuracy and smoothness of the cursor's movement. This study opened the way to the exploitation of non-linear dimensionality reduction algorithms to pursue a new and effective clinical approach for body-machine interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insect-Inspired Body Size Learning Model on a Humanoid Robot Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies Optimization-Based Analysis of a Cartwheel Quantifying Human Autonomy Recovery During Ankle Robot-Assisted Reversal of Foot Drop After Stroke ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1