基于Ghost模块的轻量级生成对抗网络

Xinyuan Xiang, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen
{"title":"基于Ghost模块的轻量级生成对抗网络","authors":"Xinyuan Xiang, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen","doi":"10.1109/RCAR54675.2022.9872153","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks are widely used in computer vision tasks like image translation and image style transfer. Most of mainstream methods including CycleGAN and pix2pix use the stacking of residual blocks to deepen the number of network layers, which makes the networks have a large number of parameters and floating point operations. This paper presents a ghost-module-based generative adversarial networks. We use the ghost module to replace the residual blocks in the traditional generative adversarial network for building lightweight generative adversarial networks. Experiments shows that our method significantly reducing the parameters and floating point operations of the generative adversarial network on the precondition of assuring the quality of the generated images.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Generative Adversarial Networks Based on Ghost Module\",\"authors\":\"Xinyuan Xiang, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen\",\"doi\":\"10.1109/RCAR54675.2022.9872153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks are widely used in computer vision tasks like image translation and image style transfer. Most of mainstream methods including CycleGAN and pix2pix use the stacking of residual blocks to deepen the number of network layers, which makes the networks have a large number of parameters and floating point operations. This paper presents a ghost-module-based generative adversarial networks. We use the ghost module to replace the residual blocks in the traditional generative adversarial network for building lightweight generative adversarial networks. Experiments shows that our method significantly reducing the parameters and floating point operations of the generative adversarial network on the precondition of assuring the quality of the generated images.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络广泛应用于图像翻译和图像风格迁移等计算机视觉任务中。包括CycleGAN和pix2pix在内的主流方法大多使用残差块的堆叠来加深网络层数,这使得网络具有大量的参数和浮点运算。提出了一种基于幽灵模块的生成对抗网络。我们使用幽灵模块取代传统生成对抗网络中的残差块,构建轻量级生成对抗网络。实验表明,该方法在保证生成图像质量的前提下,显著减少了生成对抗网络的参数和浮点运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight Generative Adversarial Networks Based on Ghost Module
Generative adversarial networks are widely used in computer vision tasks like image translation and image style transfer. Most of mainstream methods including CycleGAN and pix2pix use the stacking of residual blocks to deepen the number of network layers, which makes the networks have a large number of parameters and floating point operations. This paper presents a ghost-module-based generative adversarial networks. We use the ghost module to replace the residual blocks in the traditional generative adversarial network for building lightweight generative adversarial networks. Experiments shows that our method significantly reducing the parameters and floating point operations of the generative adversarial network on the precondition of assuring the quality of the generated images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth Recognition of Hard Inclusions in Tissue Phantoms for Robotic Palpation Design of a Miniaturized Magnetic Actuation System for Motion Control of Micro/Nano Swimming Robots Energy Shaping Based Nonlinear Anti-Swing Controller for Double-Pendulum Rotary Crane with Distributed-Mass Beams RCAR 2022 Cover Page Design and Implementation of Robot Middleware Service Integration Framework Based on DDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1