曲轴箱温度估计算法的评价

Matthias Rath, Pascal Piecha, M. Neumayer
{"title":"曲轴箱温度估计算法的评价","authors":"Matthias Rath, Pascal Piecha, M. Neumayer","doi":"10.1109/I2MTC.2018.8409663","DOIUrl":null,"url":null,"abstract":"Ongoing research in emission reduction requires accurate load detection for combustion engines with a limited number of sensors. Therefore, fast estimation of load temperature is essential. Temperature measurements are influenced by the thermal properties of the sensor itself as well as its position and mounting method. In this paper, the transient thermal behavior of the engine's crankcase and the temperature sensor for load detection is modeled as a low-pass transfer function. The unknown parameters of the transfer function are identified from experimental measurements. Maximum likelihood estimation and Kalman filtering are used to estimate the original temperature from disturbed measurements. Estimator performance is evaluated via simulations of randomized test scenarios in a Monte Carlo fashion. Influences of the model errors, the measurement noise and the estimation window-time are investigated.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of algorithms for temperature estimation in a crankcase\",\"authors\":\"Matthias Rath, Pascal Piecha, M. Neumayer\",\"doi\":\"10.1109/I2MTC.2018.8409663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ongoing research in emission reduction requires accurate load detection for combustion engines with a limited number of sensors. Therefore, fast estimation of load temperature is essential. Temperature measurements are influenced by the thermal properties of the sensor itself as well as its position and mounting method. In this paper, the transient thermal behavior of the engine's crankcase and the temperature sensor for load detection is modeled as a low-pass transfer function. The unknown parameters of the transfer function are identified from experimental measurements. Maximum likelihood estimation and Kalman filtering are used to estimate the original temperature from disturbed measurements. Estimator performance is evaluated via simulations of randomized test scenarios in a Monte Carlo fashion. Influences of the model errors, the measurement noise and the estimation window-time are investigated.\",\"PeriodicalId\":393766,\"journal\":{\"name\":\"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2018.8409663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正在进行的减排研究需要用有限数量的传感器对内燃机进行精确的负载检测。因此,快速估计负载温度是必不可少的。温度测量受传感器本身的热特性以及其位置和安装方法的影响。本文将发动机曲轴箱和用于负荷检测的温度传感器的瞬态热行为建模为低通传递函数。通过实验测量,确定了传递函数的未知参数。利用极大似然估计和卡尔曼滤波从扰动测量中估计原始温度。估计器的性能是通过蒙特卡洛方式的随机测试场景模拟来评估的。研究了模型误差、测量噪声和估计窗口时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of algorithms for temperature estimation in a crankcase
Ongoing research in emission reduction requires accurate load detection for combustion engines with a limited number of sensors. Therefore, fast estimation of load temperature is essential. Temperature measurements are influenced by the thermal properties of the sensor itself as well as its position and mounting method. In this paper, the transient thermal behavior of the engine's crankcase and the temperature sensor for load detection is modeled as a low-pass transfer function. The unknown parameters of the transfer function are identified from experimental measurements. Maximum likelihood estimation and Kalman filtering are used to estimate the original temperature from disturbed measurements. Estimator performance is evaluated via simulations of randomized test scenarios in a Monte Carlo fashion. Influences of the model errors, the measurement noise and the estimation window-time are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of the void fraction of gas-liquid two-phase CO2 flow using laser attenuation techniques Improved interpolated dynamic DFT synchrophasor estimator considering second harmonic interferences Development of a new EMAT for multi-helical SH guided waves based on magnetostrictive effect A low cost master and slave distributed intelligent meter for non-intrusive load classification and anomaly warning Investigations into the behaviours of Coriolis flowmeters under air-water two-phase flow conditions on an optimized experimental platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1