基于贝叶斯方法的立体序列视觉目标跟踪

G. Chantas, N. Nikolaidis, I. Pitas
{"title":"基于贝叶斯方法的立体序列视觉目标跟踪","authors":"G. Chantas, N. Nikolaidis, I. Pitas","doi":"10.1109/IVMSPW.2013.6611932","DOIUrl":null,"url":null,"abstract":"A general Bayesian post-processing methodology for performance improvement of object tracking in stereo video sequences is proposed in this paper. We utilize the results of any single channel visual object tracker in a Bayesian framework, in order to refine the tracking accuracy in both stereo video channels. In this framework, a variational Bayesian algorithm is employed, where prior knowledge about the object displacement (movement) is incorporated via a prior distribution. This displacement information is obtained in a preprocessing step, where object displacement is estimated via feature extraction and matching. In parallel, disparity information is extracted and utilized in the same framework. The improvements introduced by the proposed methodology in terms of tracking accuracy are quantified through experimental analysis.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Bayesian methodology for visual object tracking on stereo sequences\",\"authors\":\"G. Chantas, N. Nikolaidis, I. Pitas\",\"doi\":\"10.1109/IVMSPW.2013.6611932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general Bayesian post-processing methodology for performance improvement of object tracking in stereo video sequences is proposed in this paper. We utilize the results of any single channel visual object tracker in a Bayesian framework, in order to refine the tracking accuracy in both stereo video channels. In this framework, a variational Bayesian algorithm is employed, where prior knowledge about the object displacement (movement) is incorporated via a prior distribution. This displacement information is obtained in a preprocessing step, where object displacement is estimated via feature extraction and matching. In parallel, disparity information is extracted and utilized in the same framework. The improvements introduced by the proposed methodology in terms of tracking accuracy are quantified through experimental analysis.\",\"PeriodicalId\":170714,\"journal\":{\"name\":\"IVMSP 2013\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVMSP 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2013.6611932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种提高立体视频序列中目标跟踪性能的通用贝叶斯后处理方法。我们在贝叶斯框架中利用任何单通道视觉目标跟踪器的结果,以改进两个立体视频通道的跟踪精度。在该框架中,采用了变分贝叶斯算法,其中通过先验分布合并了关于物体位移(运动)的先验知识。该位移信息在预处理步骤中获得,其中通过特征提取和匹配估计物体位移。同时,视差信息在同一框架中提取和利用。通过实验分析,量化了该方法在跟踪精度方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian methodology for visual object tracking on stereo sequences
A general Bayesian post-processing methodology for performance improvement of object tracking in stereo video sequences is proposed in this paper. We utilize the results of any single channel visual object tracker in a Bayesian framework, in order to refine the tracking accuracy in both stereo video channels. In this framework, a variational Bayesian algorithm is employed, where prior knowledge about the object displacement (movement) is incorporated via a prior distribution. This displacement information is obtained in a preprocessing step, where object displacement is estimated via feature extraction and matching. In parallel, disparity information is extracted and utilized in the same framework. The improvements introduced by the proposed methodology in terms of tracking accuracy are quantified through experimental analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D activity measurement for stereoscopic video Flicker-free 3D shutter glasses by retardnace control of LC cell Multi-source inverse geometry CT(MS-IGCT) system: A new concept of 3D CT imaging Subjective assessment methodology for preference of experience in 3DTV Camera trajectory recovery for image-based city street modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1