网络作为过滤自然语言问题候选答案的证据来源

L. Bonnefoy, P. Bellot, M. Benoit
{"title":"网络作为过滤自然语言问题候选答案的证据来源","authors":"L. Bonnefoy, P. Bellot, M. Benoit","doi":"10.1109/WI-IAT.2011.226","DOIUrl":null,"url":null,"abstract":"Identifying and extracting named entities from web pages has been the subject of many researches. In this paper, we propose and evaluate some new unsupervised language modeling approaches to determine the membership level of a candidate answer, a named entity, to a natural language question to a very fine-grained conceptual class of entity. We propose to address this issue by using the Web or DBPedia hierarchy as sources of evidence. Then, this level of membership can be used to improve the ranking of candidate answers in a question-answering task. Lastly, we present the results we obtained by participating in TREC 2010 Entity track.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Web as a Source of Evidence for Filtering Candidate Answers to Natural Language Questions\",\"authors\":\"L. Bonnefoy, P. Bellot, M. Benoit\",\"doi\":\"10.1109/WI-IAT.2011.226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying and extracting named entities from web pages has been the subject of many researches. In this paper, we propose and evaluate some new unsupervised language modeling approaches to determine the membership level of a candidate answer, a named entity, to a natural language question to a very fine-grained conceptual class of entity. We propose to address this issue by using the Web or DBPedia hierarchy as sources of evidence. Then, this level of membership can be used to improve the ranking of candidate answers in a question-answering task. Lastly, we present the results we obtained by participating in TREC 2010 Entity track.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从网页中识别和提取命名实体一直是许多研究的主题。在本文中,我们提出并评估了一些新的无监督语言建模方法,以确定候选答案(命名实体)对自然语言问题到非常细粒度的概念实体类的隶属度。我们建议通过使用Web或DBPedia层次结构作为证据来源来解决这个问题。然后,这种级别的成员资格可用于提高问答任务中候选答案的排名。最后,介绍了参与TREC 2010实体跟踪的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Web as a Source of Evidence for Filtering Candidate Answers to Natural Language Questions
Identifying and extracting named entities from web pages has been the subject of many researches. In this paper, we propose and evaluate some new unsupervised language modeling approaches to determine the membership level of a candidate answer, a named entity, to a natural language question to a very fine-grained conceptual class of entity. We propose to address this issue by using the Web or DBPedia hierarchy as sources of evidence. Then, this level of membership can be used to improve the ranking of candidate answers in a question-answering task. Lastly, we present the results we obtained by participating in TREC 2010 Entity track.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1