在基于gps的导航系统中更快地找到路线的定制架构

Jason Loew, D. Ponomarev, P. Madden
{"title":"在基于gps的导航系统中更快地找到路线的定制架构","authors":"Jason Loew, D. Ponomarev, P. Madden","doi":"10.1109/SASP.2010.5521148","DOIUrl":null,"url":null,"abstract":"GPS based navigation systems became popular in dedicated handheld devices, and are now also found in modern cell phones, and other small personal devices. A key element of any navigation system is fast and effective route finding, and this depends heavily on Dijkstra's shortest path algorithm. Dijkstra's algorithm is serial in nature; prior efforts to accelerate it through parallel processing have had almost no success. In this paper, we present a practical approach to extract small-scale parallelism by shifting priority queue operations to a secondary tightly-coupled processor. We obtain a substantial speedup on real-world graphs (in particular, road maps), allowing the development of navigation systems that are more responsive, and also lower in total power consumption.","PeriodicalId":119893,"journal":{"name":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Customized architectures for faster route finding in GPS-based navigation systems\",\"authors\":\"Jason Loew, D. Ponomarev, P. Madden\",\"doi\":\"10.1109/SASP.2010.5521148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPS based navigation systems became popular in dedicated handheld devices, and are now also found in modern cell phones, and other small personal devices. A key element of any navigation system is fast and effective route finding, and this depends heavily on Dijkstra's shortest path algorithm. Dijkstra's algorithm is serial in nature; prior efforts to accelerate it through parallel processing have had almost no success. In this paper, we present a practical approach to extract small-scale parallelism by shifting priority queue operations to a secondary tightly-coupled processor. We obtain a substantial speedup on real-world graphs (in particular, road maps), allowing the development of navigation systems that are more responsive, and also lower in total power consumption.\",\"PeriodicalId\":119893,\"journal\":{\"name\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASP.2010.5521148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2010.5521148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于GPS的导航系统在专用手持设备中很受欢迎,现在也可以在现代手机和其他小型个人设备中找到。任何导航系统的关键要素都是快速有效的寻路,这在很大程度上取决于Dijkstra的最短路径算法。Dijkstra算法本质上是串行的;之前通过并行处理加速它的努力几乎没有成功。在本文中,我们提出了一种实用的方法,通过将优先级队列操作转移到二级紧耦合处理器来提取小规模并行性。我们在真实世界的图形(特别是道路地图)上获得了显著的加速,从而允许开发响应更快、总功耗更低的导航系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customized architectures for faster route finding in GPS-based navigation systems
GPS based navigation systems became popular in dedicated handheld devices, and are now also found in modern cell phones, and other small personal devices. A key element of any navigation system is fast and effective route finding, and this depends heavily on Dijkstra's shortest path algorithm. Dijkstra's algorithm is serial in nature; prior efforts to accelerate it through parallel processing have had almost no success. In this paper, we present a practical approach to extract small-scale parallelism by shifting priority queue operations to a secondary tightly-coupled processor. We obtain a substantial speedup on real-world graphs (in particular, road maps), allowing the development of navigation systems that are more responsive, and also lower in total power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimizing write activities to non-volatile memory via scheduling and recomputation CMA: Chip multi-accelerator A processing engine for GPS correlation Early performance-cost estimation of application-specific data path pipelining Processor accelerator for AES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1