基于知识图谱的层次感知多跳问答

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, Zhimeng Jiang
{"title":"基于知识图谱的层次感知多跳问答","authors":"Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, Zhimeng Jiang","doi":"10.1145/3543507.3583376","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KGs) have been widely used to enhance complex question answering (QA). To understand complex questions, existing studies employ language models (LMs) to encode contexts. Despite the simplicity, they neglect the latent relational information among question concepts and answers in KGs. While question concepts ubiquitously present hyponymy at the semantic level, e.g., mammals and animals, this feature is identically reflected in the hierarchical relations in KGs, e.g., a_type_of. Therefore, we are motivated to explore comprehensive reasoning by the hierarchical structures in KGs to help understand questions. However, it is non-trivial to reason over tree-like structures compared with chained paths. Moreover, identifying appropriate hierarchies relies on expertise. To this end, we propose HamQA, a novel Hierarchy-aware multi-hop Question Answering framework on knowledge graphs, to effectively align the mutual hierarchical information between question contexts and KGs. The entire learning is conducted in Hyperbolic space, inspired by its advantages of embedding hierarchical structures. Specifically, (i) we design a context-aware graph attentive network to capture context information. (ii) Hierarchical structures are continuously preserved in KGs by minimizing the Hyperbolic geodesic distances. The comprehensive reasoning is conducted to jointly train both components and provide a top-ranked candidate as an optimal answer. We achieve a higher ranking than the state-of-the-art multi-hop baselines on the official OpenBookQA leaderboard with an accuracy of 85%.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchy-Aware Multi-Hop Question Answering over Knowledge Graphs\",\"authors\":\"Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, Zhimeng Jiang\",\"doi\":\"10.1145/3543507.3583376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs (KGs) have been widely used to enhance complex question answering (QA). To understand complex questions, existing studies employ language models (LMs) to encode contexts. Despite the simplicity, they neglect the latent relational information among question concepts and answers in KGs. While question concepts ubiquitously present hyponymy at the semantic level, e.g., mammals and animals, this feature is identically reflected in the hierarchical relations in KGs, e.g., a_type_of. Therefore, we are motivated to explore comprehensive reasoning by the hierarchical structures in KGs to help understand questions. However, it is non-trivial to reason over tree-like structures compared with chained paths. Moreover, identifying appropriate hierarchies relies on expertise. To this end, we propose HamQA, a novel Hierarchy-aware multi-hop Question Answering framework on knowledge graphs, to effectively align the mutual hierarchical information between question contexts and KGs. The entire learning is conducted in Hyperbolic space, inspired by its advantages of embedding hierarchical structures. Specifically, (i) we design a context-aware graph attentive network to capture context information. (ii) Hierarchical structures are continuously preserved in KGs by minimizing the Hyperbolic geodesic distances. The comprehensive reasoning is conducted to jointly train both components and provide a top-ranked candidate as an optimal answer. We achieve a higher ranking than the state-of-the-art multi-hop baselines on the official OpenBookQA leaderboard with an accuracy of 85%.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

知识图谱(Knowledge graphs, KGs)已被广泛用于提高复杂问题的回答能力。为了理解复杂的问题,现有的研究使用语言模型(LMs)对上下文进行编码。虽然问题概念在语义层面上普遍存在着下位义,例如哺乳动物和动物,但这一特征同样反映在问题概念的层次关系上,例如a_type_of。因此,我们有动机探索KGs中层次结构的综合推理,以帮助理解问题。然而,与链式路径相比,对树状结构进行推理是非平凡的。此外,确定适当的层次结构依赖于专业知识。为此,我们提出了一种新的基于知识图的层次感知多跳问答框架HamQA,以有效地对齐问题上下文和知识图谱之间的相互层次信息,整个学习过程在双曲空间中进行,灵感来自于其嵌入层次结构的优势。具体来说,(i)我们设计了一个上下文感知的图关注网络来捕获上下文信息。(ii)通过最小化双曲测地线距离,在kg中连续保留了分层结构。进行综合推理,共同训练两个分量,并提供一个排名靠前的候选人作为最优答案。我们在官方OpenBookQA排行榜上获得了比最先进的多跳基线更高的排名,准确率为85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchy-Aware Multi-Hop Question Answering over Knowledge Graphs
Knowledge graphs (KGs) have been widely used to enhance complex question answering (QA). To understand complex questions, existing studies employ language models (LMs) to encode contexts. Despite the simplicity, they neglect the latent relational information among question concepts and answers in KGs. While question concepts ubiquitously present hyponymy at the semantic level, e.g., mammals and animals, this feature is identically reflected in the hierarchical relations in KGs, e.g., a_type_of. Therefore, we are motivated to explore comprehensive reasoning by the hierarchical structures in KGs to help understand questions. However, it is non-trivial to reason over tree-like structures compared with chained paths. Moreover, identifying appropriate hierarchies relies on expertise. To this end, we propose HamQA, a novel Hierarchy-aware multi-hop Question Answering framework on knowledge graphs, to effectively align the mutual hierarchical information between question contexts and KGs. The entire learning is conducted in Hyperbolic space, inspired by its advantages of embedding hierarchical structures. Specifically, (i) we design a context-aware graph attentive network to capture context information. (ii) Hierarchical structures are continuously preserved in KGs by minimizing the Hyperbolic geodesic distances. The comprehensive reasoning is conducted to jointly train both components and provide a top-ranked candidate as an optimal answer. We achieve a higher ranking than the state-of-the-art multi-hop baselines on the official OpenBookQA leaderboard with an accuracy of 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1