基于小波分解的F0作为多任务学习的基于dnn的语音合成的辅助任务

M. Ribeiro, O. Watts, J. Yamagishi, R. Clark
{"title":"基于小波分解的F0作为多任务学习的基于dnn的语音合成的辅助任务","authors":"M. Ribeiro, O. Watts, J. Yamagishi, R. Clark","doi":"10.1109/ICASSP.2016.7472734","DOIUrl":null,"url":null,"abstract":"We investigate two wavelet-based decomposition strategies of the f0 signal and their usefulness as a secondary task for speech synthesis using multi-task deep neural networks (MTL-DNN). The first decomposition strategy uses a static set of scales for all utterances in the training data. We propose a second strategy, where the scale of the mother wavelet is dynamically adjusted to the rate of each utterance. This approach is able to capture f0 variations related to the syllable, word, clitic-group, and phrase units. This method also constrains the wavelet components to be within the frequency range that previous experiments have shown to be more natural. These two strategies are evaluated as a secondary task in multi-task deep neural networks (MTL-DNNs). Results indicate that on an expressive dataset there is a strong preference for the systems using multi-task learning when compared to the baseline system.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Wavelet-based decomposition of F0 as a secondary task for DNN-based speech synthesis with multi-task learning\",\"authors\":\"M. Ribeiro, O. Watts, J. Yamagishi, R. Clark\",\"doi\":\"10.1109/ICASSP.2016.7472734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate two wavelet-based decomposition strategies of the f0 signal and their usefulness as a secondary task for speech synthesis using multi-task deep neural networks (MTL-DNN). The first decomposition strategy uses a static set of scales for all utterances in the training data. We propose a second strategy, where the scale of the mother wavelet is dynamically adjusted to the rate of each utterance. This approach is able to capture f0 variations related to the syllable, word, clitic-group, and phrase units. This method also constrains the wavelet components to be within the frequency range that previous experiments have shown to be more natural. These two strategies are evaluated as a secondary task in multi-task deep neural networks (MTL-DNNs). Results indicate that on an expressive dataset there is a strong preference for the systems using multi-task learning when compared to the baseline system.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们研究了两种基于小波的f0信号分解策略,以及它们作为使用多任务深度神经网络(MTL-DNN)进行语音合成的辅助任务的有效性。第一种分解策略对训练数据中的所有话语使用一组静态尺度。我们提出了第二种策略,其中母小波的尺度根据每个话语的频率动态调整。这种方法能够捕获与音节、单词、关键字组和短语单位相关的60种变体。该方法还将小波分量限制在先前实验显示的更自然的频率范围内。在多任务深度神经网络(mtl - dnn)中,这两种策略作为次要任务进行评估。结果表明,与基线系统相比,在表达性数据集上,使用多任务学习的系统有强烈的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet-based decomposition of F0 as a secondary task for DNN-based speech synthesis with multi-task learning
We investigate two wavelet-based decomposition strategies of the f0 signal and their usefulness as a secondary task for speech synthesis using multi-task deep neural networks (MTL-DNN). The first decomposition strategy uses a static set of scales for all utterances in the training data. We propose a second strategy, where the scale of the mother wavelet is dynamically adjusted to the rate of each utterance. This approach is able to capture f0 variations related to the syllable, word, clitic-group, and phrase units. This method also constrains the wavelet components to be within the frequency range that previous experiments have shown to be more natural. These two strategies are evaluated as a secondary task in multi-task deep neural networks (MTL-DNNs). Results indicate that on an expressive dataset there is a strong preference for the systems using multi-task learning when compared to the baseline system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1