历史文献图像二值化的CNN-Transformer混合模型

V. Rezanezhad, Konstantin Baierer, Clemens Neudecker
{"title":"历史文献图像二值化的CNN-Transformer混合模型","authors":"V. Rezanezhad, Konstantin Baierer, Clemens Neudecker","doi":"10.1145/3604951.3605508","DOIUrl":null,"url":null,"abstract":"Document image binarization is one of the main preprocessing steps in document image analysis for text recognition. Noise, faint characters, bad scanning conditions, uneven lighting or paper aging can cause artifacts that negatively impact text recognition algorithms. The task of binarization is to segment the foreground (text) from these degradations in order to improve optical character recognition (OCR) results. Convolutional Neural Networks (CNNs) are one popular method for binarization. But they suffer from focusing on the local context in a document image. We have applied a hybrid CNN-Transformer model to convert a document image into a binary output. For the model training, we used datasets from the Document Image Binarization Contests (DIBCO). For the datasets DIBCO-2012, DIBCO-2017 and DIBCO-2018, our model outperforms the state-of-the-art algorithms.","PeriodicalId":375632,"journal":{"name":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid CNN-Transformer model for Historical Document Image Binarization\",\"authors\":\"V. Rezanezhad, Konstantin Baierer, Clemens Neudecker\",\"doi\":\"10.1145/3604951.3605508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document image binarization is one of the main preprocessing steps in document image analysis for text recognition. Noise, faint characters, bad scanning conditions, uneven lighting or paper aging can cause artifacts that negatively impact text recognition algorithms. The task of binarization is to segment the foreground (text) from these degradations in order to improve optical character recognition (OCR) results. Convolutional Neural Networks (CNNs) are one popular method for binarization. But they suffer from focusing on the local context in a document image. We have applied a hybrid CNN-Transformer model to convert a document image into a binary output. For the model training, we used datasets from the Document Image Binarization Contests (DIBCO). For the datasets DIBCO-2012, DIBCO-2017 and DIBCO-2018, our model outperforms the state-of-the-art algorithms.\",\"PeriodicalId\":375632,\"journal\":{\"name\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604951.3605508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604951.3605508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文档图像二值化是文本识别中文档图像分析的主要预处理步骤之一。噪声、模糊的字符、糟糕的扫描条件、不均匀的光照或纸张老化都会导致对文本识别算法产生负面影响的伪影。二值化的任务是从这些退化中分割前景(文本),以改善光学字符识别(OCR)结果。卷积神经网络(cnn)是一种流行的二值化方法。但是,他们在文档图像中关注本地上下文时遇到了麻烦。我们应用了CNN-Transformer混合模型将文档图像转换为二进制输出。对于模型训练,我们使用了来自文档图像二值化竞赛(DIBCO)的数据集。对于DIBCO-2012、DIBCO-2017和DIBCO-2018数据集,我们的模型优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid CNN-Transformer model for Historical Document Image Binarization
Document image binarization is one of the main preprocessing steps in document image analysis for text recognition. Noise, faint characters, bad scanning conditions, uneven lighting or paper aging can cause artifacts that negatively impact text recognition algorithms. The task of binarization is to segment the foreground (text) from these degradations in order to improve optical character recognition (OCR) results. Convolutional Neural Networks (CNNs) are one popular method for binarization. But they suffer from focusing on the local context in a document image. We have applied a hybrid CNN-Transformer model to convert a document image into a binary output. For the model training, we used datasets from the Document Image Binarization Contests (DIBCO). For the datasets DIBCO-2012, DIBCO-2017 and DIBCO-2018, our model outperforms the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gauging the Limitations of Natural Language Supervised Text-Image Metrics Learning by Iconclass Visual Concepts Laypa: A Novel Framework for Applying Segmentation Networks to Historical Documents Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents PapyTwin net: a Twin network for Greek letters detection on ancient Papyri Enhancing Named Entity Recognition for Holocaust Testimonies through Pseudo Labelling and Transformer-based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1