D. Panigo, P. Gluzmann, E. Mocskos, Adan Mauri Ungaro, Valentin Mari, Nicolás Monzón
{"title":"GlobalSearchRegression。[j]:在脂肪数据场景中建立机器学习和计量经济学之间的桥梁","authors":"D. Panigo, P. Gluzmann, E. Mocskos, Adan Mauri Ungaro, Valentin Mari, Nicolás Monzón","doi":"10.21105/jcon.00053","DOIUrl":null,"url":null,"abstract":"The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds ( ModelSelection.jl). The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.","PeriodicalId":443465,"journal":{"name":"JuliaCon Proceedings","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GlobalSearchRegression.jl: \\\\ Building bridges between Machine Learning and Econometrics in Fat-Data scenarios\",\"authors\":\"D. Panigo, P. Gluzmann, E. Mocskos, Adan Mauri Ungaro, Valentin Mari, Nicolás Monzón\",\"doi\":\"10.21105/jcon.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds ( ModelSelection.jl). The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.\",\"PeriodicalId\":443465,\"journal\":{\"name\":\"JuliaCon Proceedings\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JuliaCon Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/jcon.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JuliaCon Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/jcon.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GlobalSearchRegression.jl: \ Building bridges between Machine Learning and Econometrics in Fat-Data scenarios
The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds ( ModelSelection.jl). The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.