无线胶囊内窥镜的计算机化诊断决策支持系统

V. Kodogiannis, J. Lygouras
{"title":"无线胶囊内窥镜的计算机化诊断决策支持系统","authors":"V. Kodogiannis, J. Lygouras","doi":"10.1109/IS.2006.348494","DOIUrl":null,"url":null,"abstract":"Decision support systems have been utilised since 1960, providing physicians with fast and accurate means towards more accurate diagnoses, increased tolerance when handling missing or incomplete data. In this paper an integrated intelligent framework has been developed for the analysis/diagnosis of wireless capsule endoscopic images. The proposed system extracts texture features from the texture spectra in the chromatic and achromatic domains for a selected region of interest from each colour component histogram of images and utilises an advanced neural network in a multiple classifier scheme. The preliminary test results support the feasibility of the proposed methodology","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Computerised Diagnostic Decision Support System in Wireless-Capsule Endoscopy\",\"authors\":\"V. Kodogiannis, J. Lygouras\",\"doi\":\"10.1109/IS.2006.348494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision support systems have been utilised since 1960, providing physicians with fast and accurate means towards more accurate diagnoses, increased tolerance when handling missing or incomplete data. In this paper an integrated intelligent framework has been developed for the analysis/diagnosis of wireless capsule endoscopic images. The proposed system extracts texture features from the texture spectra in the chromatic and achromatic domains for a selected region of interest from each colour component histogram of images and utilises an advanced neural network in a multiple classifier scheme. The preliminary test results support the feasibility of the proposed methodology\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

决策支持系统自1960年以来一直在使用,为医生提供了快速和准确的手段,以实现更准确的诊断,在处理丢失或不完整的数据时增加了容忍度。本文开发了一种用于无线胶囊内窥镜图像分析/诊断的集成智能框架。该系统从图像的每个颜色成分直方图中选择感兴趣区域的色差和消色差域的纹理光谱中提取纹理特征,并在多分类器方案中利用先进的神经网络。初步试验结果支持了所提出方法的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Computerised Diagnostic Decision Support System in Wireless-Capsule Endoscopy
Decision support systems have been utilised since 1960, providing physicians with fast and accurate means towards more accurate diagnoses, increased tolerance when handling missing or incomplete data. In this paper an integrated intelligent framework has been developed for the analysis/diagnosis of wireless capsule endoscopic images. The proposed system extracts texture features from the texture spectra in the chromatic and achromatic domains for a selected region of interest from each colour component histogram of images and utilises an advanced neural network in a multiple classifier scheme. The preliminary test results support the feasibility of the proposed methodology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1