眼部伪影存在下基于卷积神经网络的脑电图癫痫发作分类性能分析

Payal Patel, U. Satija
{"title":"眼部伪影存在下基于卷积神经网络的脑电图癫痫发作分类性能分析","authors":"Payal Patel, U. Satija","doi":"10.1109/NCC52529.2021.9530053","DOIUrl":null,"url":null,"abstract":"Recently, convolutional neural network (CNN) has played a crucial role in classifying epileptic seizures due to its capability of automatically learning the discriminatory features from the raw electroencephalogram (EEG) data. Moreover, most of the existing methods considered artifact-free EEG data for extracting features. In this paper, we analyze the impact of ocular artifacts on the performance of CNN in extracting reliable features from the EEG data for seizure classification. Furthermore, we also analyze the robustness of CNN in determining the accurate and reliable features not only from raw EEG data but also from spectral domain EEG data. The performance of the method is evaluated on the EEG signals taken from the Bonn's dataset with different types and levels of ocular artifacts. Performance evaluation results demonstrate that the classification accuracy of the method is degraded significantly under the presence of ocular artifacts. Furthermore, it is observed that the proposed CNN architecture is able to extract the discriminatory features from spectral EEG data more accurately as compared to the raw temporal EEG data.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Convolutional Neural Network Based EEG Epileptic Seizure Classification in Presence of Ocular Artifacts\",\"authors\":\"Payal Patel, U. Satija\",\"doi\":\"10.1109/NCC52529.2021.9530053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, convolutional neural network (CNN) has played a crucial role in classifying epileptic seizures due to its capability of automatically learning the discriminatory features from the raw electroencephalogram (EEG) data. Moreover, most of the existing methods considered artifact-free EEG data for extracting features. In this paper, we analyze the impact of ocular artifacts on the performance of CNN in extracting reliable features from the EEG data for seizure classification. Furthermore, we also analyze the robustness of CNN in determining the accurate and reliable features not only from raw EEG data but also from spectral domain EEG data. The performance of the method is evaluated on the EEG signals taken from the Bonn's dataset with different types and levels of ocular artifacts. Performance evaluation results demonstrate that the classification accuracy of the method is degraded significantly under the presence of ocular artifacts. Furthermore, it is observed that the proposed CNN architecture is able to extract the discriminatory features from spectral EEG data more accurately as compared to the raw temporal EEG data.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卷积神经网络(CNN)由于能够从原始脑电图(EEG)数据中自动学习区分特征,在癫痫发作分类中发挥了至关重要的作用。此外,现有方法大多采用无伪影的脑电数据进行特征提取。在本文中,我们分析了眼部伪影对CNN从脑电图数据中提取可靠特征用于癫痫发作分类性能的影响。此外,我们还分析了CNN在从原始脑电数据和频谱域脑电数据中确定准确可靠特征方面的鲁棒性。在波恩数据集中采集的具有不同类型和级别眼伪影的脑电信号上,对该方法的性能进行了评估。性能评价结果表明,在人眼伪像存在的情况下,该方法的分类精度明显下降。此外,与原始时间脑电数据相比,本文提出的CNN架构能够更准确地从频谱脑电数据中提取出区别特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Convolutional Neural Network Based EEG Epileptic Seizure Classification in Presence of Ocular Artifacts
Recently, convolutional neural network (CNN) has played a crucial role in classifying epileptic seizures due to its capability of automatically learning the discriminatory features from the raw electroencephalogram (EEG) data. Moreover, most of the existing methods considered artifact-free EEG data for extracting features. In this paper, we analyze the impact of ocular artifacts on the performance of CNN in extracting reliable features from the EEG data for seizure classification. Furthermore, we also analyze the robustness of CNN in determining the accurate and reliable features not only from raw EEG data but also from spectral domain EEG data. The performance of the method is evaluated on the EEG signals taken from the Bonn's dataset with different types and levels of ocular artifacts. Performance evaluation results demonstrate that the classification accuracy of the method is degraded significantly under the presence of ocular artifacts. Furthermore, it is observed that the proposed CNN architecture is able to extract the discriminatory features from spectral EEG data more accurately as compared to the raw temporal EEG data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1