勒索软件特征向量混合进化检测方法

Nawaf Aljubory, B. Khammas
{"title":"勒索软件特征向量混合进化检测方法","authors":"Nawaf Aljubory, B. Khammas","doi":"10.1109/ITSS-IoE53029.2021.9615344","DOIUrl":null,"url":null,"abstract":"Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.","PeriodicalId":230566,"journal":{"name":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection\",\"authors\":\"Nawaf Aljubory, B. Khammas\",\"doi\":\"10.1109/ITSS-IoE53029.2021.9615344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.\",\"PeriodicalId\":230566,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSS-IoE53029.2021.9615344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSS-IoE53029.2021.9615344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

勒索软件是构成网络安全领域重大挑战的最严重威胁之一。网络犯罪分子利用这种攻击来加密受害者的文件或感染受害者的设备,以索要赎金来恢复对这些文件和设备的访问权限。勒索软件对成千上万的个人和公司的威胁不断升级,迫切需要创建一个能够主动检测和预防勒索软件的系统。在本研究中,提出了一种基于三种机器学习算法(随机森林、支持向量机和Näive贝叶斯)的勒索软件检测和分类新方法。采用样本静态分析技术直接从原始字节中提取特征集,提高了检测速度。为了提供最佳的检测精度,采用CF-NCF (Class Frequency - Non-Class Frequency)方法生成特征向量。该方法可以区分勒索软件和恶意软件文件,检测准确率高达98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection
Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attendance Management System Using Facial Recognition and Image Augmentation Technique A Fuzzy GPSR Route Selection Based on Link Quality and Neighbor Node in VANET Program Abstract Book Ultra-Low Profile, Compact Quasi-Yagi Antenna Suitable for IoT Application ITSS-IoE 2021 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1