在2.3µs内实现鲁棒特征匹配

S. Taylor, E. Rosten, T. Drummond
{"title":"在2.3µs内实现鲁棒特征匹配","authors":"S. Taylor, E. Rosten, T. Drummond","doi":"10.1109/CVPRW.2009.5204314","DOIUrl":null,"url":null,"abstract":"In this paper we present a robust feature matching scheme in which features can be matched in 2.3µs. For a typical task involving 150 features per image, this results in a processing time of 500µs for feature extraction and matching. In order to achieve very fast matching we use simple features based on histograms of pixel intensities and an indexing scheme based on their joint distribution. The features are stored with a novel bit mask representation which requires only 44 bytes of memory per feature and allows computation of a dissimilarity score in 20ns. A training phase gives the patch-based features invariance to small viewpoint variations. Larger viewpoint variations are handled by training entirely independent sets of features from different viewpoints. A complete system is presented where a database of around 13,000 features is used to robustly localise a single planar target in just over a millisecond, including all steps from feature detection to model fitting. The resulting system shows comparable robustness to SIFT [8] and Ferns [14] while using a tiny fraction of the processing time, and in the latter case a fraction of the memory as well.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Robust feature matching in 2.3µs\",\"authors\":\"S. Taylor, E. Rosten, T. Drummond\",\"doi\":\"10.1109/CVPRW.2009.5204314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a robust feature matching scheme in which features can be matched in 2.3µs. For a typical task involving 150 features per image, this results in a processing time of 500µs for feature extraction and matching. In order to achieve very fast matching we use simple features based on histograms of pixel intensities and an indexing scheme based on their joint distribution. The features are stored with a novel bit mask representation which requires only 44 bytes of memory per feature and allows computation of a dissimilarity score in 20ns. A training phase gives the patch-based features invariance to small viewpoint variations. Larger viewpoint variations are handled by training entirely independent sets of features from different viewpoints. A complete system is presented where a database of around 13,000 features is used to robustly localise a single planar target in just over a millisecond, including all steps from feature detection to model fitting. The resulting system shows comparable robustness to SIFT [8] and Ferns [14] while using a tiny fraction of the processing time, and in the latter case a fraction of the memory as well.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

在本文中,我们提出了一种鲁棒的特征匹配方案,该方案可以在2.3µs内匹配特征。对于每张图像涉及150个特征的典型任务,这导致特征提取和匹配的处理时间为500µs。为了实现快速匹配,我们使用基于像素强度直方图的简单特征和基于它们的联合分布的索引方案。特征以一种新颖的位掩码表示方式存储,每个特征只需要44字节的内存,并允许在20ns内计算不同的分数。训练阶段使基于补丁的特征对小的视点变化具有不变性。通过训练来自不同视点的完全独立的特征集来处理较大的视点变化。提出了一个完整的系统,其中使用大约13,000个特征数据库在一毫秒多一点的时间内对单个平面目标进行鲁棒定位,包括从特征检测到模型拟合的所有步骤。所得到的系统显示出与SIFT[8]和Ferns[14]相当的鲁棒性,同时使用很小一部分的处理时间,在后者的情况下也使用一小部分的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust feature matching in 2.3µs
In this paper we present a robust feature matching scheme in which features can be matched in 2.3µs. For a typical task involving 150 features per image, this results in a processing time of 500µs for feature extraction and matching. In order to achieve very fast matching we use simple features based on histograms of pixel intensities and an indexing scheme based on their joint distribution. The features are stored with a novel bit mask representation which requires only 44 bytes of memory per feature and allows computation of a dissimilarity score in 20ns. A training phase gives the patch-based features invariance to small viewpoint variations. Larger viewpoint variations are handled by training entirely independent sets of features from different viewpoints. A complete system is presented where a database of around 13,000 features is used to robustly localise a single planar target in just over a millisecond, including all steps from feature detection to model fitting. The resulting system shows comparable robustness to SIFT [8] and Ferns [14] while using a tiny fraction of the processing time, and in the latter case a fraction of the memory as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1