{"title":"半线性抛物型偏微分系统的鲁棒控制设计:一种模糊方法","authors":"O. Gaye, O. Pagès, A. Hajjaji","doi":"10.1109/CCA.2014.6981459","DOIUrl":null,"url":null,"abstract":"This communication deals with the robust H∞ stabilization of the semilinear partial differential system using Lyapunov theory. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of controls. In general, it is difficult to control partial differential systems. In order to simplify the design procedure of control law, a fuzzy partial differential system based on fuzzy interpolation approach is proposed. Based on this distributed model, the distributed robust control design is proposed to attenuate disturbances via solving linear matrix inequalities (LMIs). Finally, numerical results are presented and discussed to illustrate the effectiveness of the proposed approach.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust control design of semilinear parabolic partial differential systems: A fuzzy approach\",\"authors\":\"O. Gaye, O. Pagès, A. Hajjaji\",\"doi\":\"10.1109/CCA.2014.6981459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This communication deals with the robust H∞ stabilization of the semilinear partial differential system using Lyapunov theory. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of controls. In general, it is difficult to control partial differential systems. In order to simplify the design procedure of control law, a fuzzy partial differential system based on fuzzy interpolation approach is proposed. Based on this distributed model, the distributed robust control design is proposed to attenuate disturbances via solving linear matrix inequalities (LMIs). Finally, numerical results are presented and discussed to illustrate the effectiveness of the proposed approach.\",\"PeriodicalId\":205599,\"journal\":{\"name\":\"2014 IEEE Conference on Control Applications (CCA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2014.6981459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust control design of semilinear parabolic partial differential systems: A fuzzy approach
This communication deals with the robust H∞ stabilization of the semilinear partial differential system using Lyapunov theory. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of controls. In general, it is difficult to control partial differential systems. In order to simplify the design procedure of control law, a fuzzy partial differential system based on fuzzy interpolation approach is proposed. Based on this distributed model, the distributed robust control design is proposed to attenuate disturbances via solving linear matrix inequalities (LMIs). Finally, numerical results are presented and discussed to illustrate the effectiveness of the proposed approach.