使用自动异常检测追踪软件漏洞

Sudheendra Hangal, M. Lam
{"title":"使用自动异常检测追踪软件漏洞","authors":"Sudheendra Hangal, M. Lam","doi":"10.1145/581339.581377","DOIUrl":null,"url":null,"abstract":"Introduces DIDUCE, a practical and effective tool that aids programmers in detecting complex program errors and identifying their root causes. By instrumenting a program and observing its behavior as it runs, DIDUCE dynamically formulates hypotheses of invariants obeyed by the program. DIDUCE hypothesizes the strictest invariants at the beginning, and gradually relaxes the hypothesis as violations are detected to allow for new behavior. The violations reported help users to catch software bugs as soon as they occur. They also give programmers new visibility into the behavior of the programs such as identifying rare corner cases in the program logic or even locating hidden errors that corrupt the program's results. We implemented the DIDUCE system for Java programs and applied it to four programs of significant size and complexity. DIDUCE succeeded in identifying the root causes of programming errors in each of the programs quickly and automatically. In particular, DIDUCE is effective in isolating a timing-dependent bug in a released JSSE (Java Secure Socket Extension) library, which would have taken an experienced programmer days to find. Our experience suggests that detecting and checking program invariants dynamically is a simple and effective methodology for debugging many different kinds of program errors across a wide variety of application domains.","PeriodicalId":186061,"journal":{"name":"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"705","resultStr":"{\"title\":\"Tracking down software bugs using automatic anomaly detection\",\"authors\":\"Sudheendra Hangal, M. Lam\",\"doi\":\"10.1145/581339.581377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduces DIDUCE, a practical and effective tool that aids programmers in detecting complex program errors and identifying their root causes. By instrumenting a program and observing its behavior as it runs, DIDUCE dynamically formulates hypotheses of invariants obeyed by the program. DIDUCE hypothesizes the strictest invariants at the beginning, and gradually relaxes the hypothesis as violations are detected to allow for new behavior. The violations reported help users to catch software bugs as soon as they occur. They also give programmers new visibility into the behavior of the programs such as identifying rare corner cases in the program logic or even locating hidden errors that corrupt the program's results. We implemented the DIDUCE system for Java programs and applied it to four programs of significant size and complexity. DIDUCE succeeded in identifying the root causes of programming errors in each of the programs quickly and automatically. In particular, DIDUCE is effective in isolating a timing-dependent bug in a released JSSE (Java Secure Socket Extension) library, which would have taken an experienced programmer days to find. Our experience suggests that detecting and checking program invariants dynamically is a simple and effective methodology for debugging many different kinds of program errors across a wide variety of application domains.\",\"PeriodicalId\":186061,\"journal\":{\"name\":\"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"705\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/581339.581377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581339.581377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 705

摘要

介绍DIDUCE,一个实用有效的工具,可以帮助程序员检测复杂的程序错误并找出其根源。通过检测程序并观察其运行时的行为,DIDUCE动态地制定程序遵守的不变量的假设。DIDUCE在开始时假设最严格的不变量,并在检测到违规时逐渐放宽假设以允许新的行为。报告的违规行为有助于用户在软件错误发生时及时发现。它们还为程序员提供了对程序行为的新的可见性,例如识别程序逻辑中罕见的极端情况,甚至定位损坏程序结果的隐藏错误。我们为Java程序实现了DIDUCE系统,并将其应用于四个规模和复杂性都很大的程序。DIDUCE成功地快速、自动地识别了每个程序中编程错误的根本原因。特别是,DIDUCE可以有效地隔离已发布的JSSE (Java安全套接字扩展)库中与时间相关的错误,而经验丰富的程序员可能要花几天时间才能发现这些错误。我们的经验表明,动态检测和检查程序不变量是一种简单而有效的方法,可以在各种应用程序领域中调试许多不同类型的程序错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking down software bugs using automatic anomaly detection
Introduces DIDUCE, a practical and effective tool that aids programmers in detecting complex program errors and identifying their root causes. By instrumenting a program and observing its behavior as it runs, DIDUCE dynamically formulates hypotheses of invariants obeyed by the program. DIDUCE hypothesizes the strictest invariants at the beginning, and gradually relaxes the hypothesis as violations are detected to allow for new behavior. The violations reported help users to catch software bugs as soon as they occur. They also give programmers new visibility into the behavior of the programs such as identifying rare corner cases in the program logic or even locating hidden errors that corrupt the program's results. We implemented the DIDUCE system for Java programs and applied it to four programs of significant size and complexity. DIDUCE succeeded in identifying the root causes of programming errors in each of the programs quickly and automatically. In particular, DIDUCE is effective in isolating a timing-dependent bug in a released JSSE (Java Secure Socket Extension) library, which would have taken an experienced programmer days to find. Our experience suggests that detecting and checking program invariants dynamically is a simple and effective methodology for debugging many different kinds of program errors across a wide variety of application domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The CommUnity Workbench Tutorial: introduction to the Rational Unified Process/sup /spl reg// Hyper/J/spl trade/: multi-dimensional separation of concerns for Java/spl trade/ Detection of conflicting functional requirements in a use case-driven approach Visualization of test information to assist fault localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1