基于几何特征和文本识别的装配指令识别

Jaewoo Park, Isaac Kang, Junhyeong Kwon, Eunji Lee, Yoonsik Kim, Sujeong You, S. Ji, N. Cho
{"title":"基于几何特征和文本识别的装配指令识别","authors":"Jaewoo Park, Isaac Kang, Junhyeong Kwon, Eunji Lee, Yoonsik Kim, Sujeong You, S. Ji, N. Cho","doi":"10.1109/UR49135.2020.9144892","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning methods have increased the performances of object detection and recognition systems. Accordingly, automatic understanding of assembly instructions in manuals in the form of electronic or paper materials has also become an issue in the research community. This task is quite challenging because it requires the automatic optical character recognition (OCR) and also the understanding of various mechanical parts and diverse assembly illustrations that are sometimes difficult to understand even for humans. Although deep networks are showing high performance in many computer vision tasks, it is still difficult to perform this task by an end-to-end deep neural network due to the lack of training data, and also because of diversity and ambiguity of illustrative instructions. Hence, in this paper, we propose to tackle this problem by using both conventional non-learning approaches and deep neural networks, considering the current state-of-the-arts. Precisely, we first extract components having strict geometric structures, such as characters and illustrations, by conventional non-learning algorithms, and then apply deep neural networks to recognize the extracted components. The main targets considered in this paper are the types and the numbers of connectors, and behavioral indicators such as circles, rectangles, and arrows for each cut in do-it-yourself (DIY) furniture assembly manuals. For these limited targets, we train a deep neural network to recognize them with high precision. Experiments show that our method works robustly in various types of furniture assembly instructions.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Assembly Instructions Based on Geometric Feature and Text Recognition\",\"authors\":\"Jaewoo Park, Isaac Kang, Junhyeong Kwon, Eunji Lee, Yoonsik Kim, Sujeong You, S. Ji, N. Cho\",\"doi\":\"10.1109/UR49135.2020.9144892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in machine learning methods have increased the performances of object detection and recognition systems. Accordingly, automatic understanding of assembly instructions in manuals in the form of electronic or paper materials has also become an issue in the research community. This task is quite challenging because it requires the automatic optical character recognition (OCR) and also the understanding of various mechanical parts and diverse assembly illustrations that are sometimes difficult to understand even for humans. Although deep networks are showing high performance in many computer vision tasks, it is still difficult to perform this task by an end-to-end deep neural network due to the lack of training data, and also because of diversity and ambiguity of illustrative instructions. Hence, in this paper, we propose to tackle this problem by using both conventional non-learning approaches and deep neural networks, considering the current state-of-the-arts. Precisely, we first extract components having strict geometric structures, such as characters and illustrations, by conventional non-learning algorithms, and then apply deep neural networks to recognize the extracted components. The main targets considered in this paper are the types and the numbers of connectors, and behavioral indicators such as circles, rectangles, and arrows for each cut in do-it-yourself (DIY) furniture assembly manuals. For these limited targets, we train a deep neural network to recognize them with high precision. Experiments show that our method works robustly in various types of furniture assembly instructions.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习方法的最新进展提高了目标检测和识别系统的性能。因此,自动理解电子或纸质材料形式的手册中的装配说明也成为研究界的一个问题。这项任务是相当具有挑战性的,因为它需要自动光学字符识别(OCR),也需要理解各种机械零件和各种装配插图,有时甚至对人类来说也很难理解。尽管深度网络在许多计算机视觉任务中显示出高性能,但由于缺乏训练数据,并且由于说明性指令的多样性和模糊性,端到端深度神经网络仍然难以完成这些任务。因此,在本文中,我们建议通过使用传统的非学习方法和深度神经网络来解决这个问题,考虑到目前的最先进的技术。具体来说,我们首先通过传统的非学习算法提取具有严格几何结构的成分,如字符和插图,然后应用深度神经网络对提取的成分进行识别。本文考虑的主要目标是连接器的类型和数量,以及DIY家具组装手册中每个切割的圆形、矩形和箭头等行为指标。对于这些有限的目标,我们训练了一个深度神经网络来对它们进行高精度的识别。实验表明,该方法对各种类型的家具装配指令具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Assembly Instructions Based on Geometric Feature and Text Recognition
Recent advances in machine learning methods have increased the performances of object detection and recognition systems. Accordingly, automatic understanding of assembly instructions in manuals in the form of electronic or paper materials has also become an issue in the research community. This task is quite challenging because it requires the automatic optical character recognition (OCR) and also the understanding of various mechanical parts and diverse assembly illustrations that are sometimes difficult to understand even for humans. Although deep networks are showing high performance in many computer vision tasks, it is still difficult to perform this task by an end-to-end deep neural network due to the lack of training data, and also because of diversity and ambiguity of illustrative instructions. Hence, in this paper, we propose to tackle this problem by using both conventional non-learning approaches and deep neural networks, considering the current state-of-the-arts. Precisely, we first extract components having strict geometric structures, such as characters and illustrations, by conventional non-learning algorithms, and then apply deep neural networks to recognize the extracted components. The main targets considered in this paper are the types and the numbers of connectors, and behavioral indicators such as circles, rectangles, and arrows for each cut in do-it-yourself (DIY) furniture assembly manuals. For these limited targets, we train a deep neural network to recognize them with high precision. Experiments show that our method works robustly in various types of furniture assembly instructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1