利用频谱特征展示了中挥拍到脚跟击打部分的步态周期的现实意义

Asma Qureshi, M. Engelhard, Maite Brandt-Pearce, M. Goldman
{"title":"利用频谱特征展示了中挥拍到脚跟击打部分的步态周期的现实意义","authors":"Asma Qureshi, M. Engelhard, Maite Brandt-Pearce, M. Goldman","doi":"10.1109/BSN.2017.7936025","DOIUrl":null,"url":null,"abstract":"Multiple sclerosis (MS) interrupts communication between the brain and other parts of the body causing functional deterioration. Gait impairment is a common finding in MS, one caused by several neurological symptoms. We perform an event-specific analysis to study the variable impact of MS on gait components. Our results show that the mid-swing to heel strike (HS) phase of a gait cycle is the most indicative of motor problems. We apply the Hilbert-Huang transform to inertial gait data, corresponding to this phase, to extract the spectral features and study their relationships with the patient-reported outcomes. A number of strong and statistically significant dependencies were found, many having to do with activities of daily living and MS walking scale, leading to the conclusion that the disturbance in mid-swing to HS is specific to deterioration in physical functions. Spearman correlations coefficients and adjusted R2 obtained using stepwise linear regression models are reported. We conclude that event-specific gait features can be used to quantify the precise impact of MS symptoms on gait phases and identify markers of balance, stability, or fall risk, etc. We believe that this information supplements on-going MS research and could be used to develop personalized disease-modifying therapies and exercises.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demonstrating the real-world significance of the mid-swing to heel strike part of the gait cycle using spectral features\",\"authors\":\"Asma Qureshi, M. Engelhard, Maite Brandt-Pearce, M. Goldman\",\"doi\":\"10.1109/BSN.2017.7936025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple sclerosis (MS) interrupts communication between the brain and other parts of the body causing functional deterioration. Gait impairment is a common finding in MS, one caused by several neurological symptoms. We perform an event-specific analysis to study the variable impact of MS on gait components. Our results show that the mid-swing to heel strike (HS) phase of a gait cycle is the most indicative of motor problems. We apply the Hilbert-Huang transform to inertial gait data, corresponding to this phase, to extract the spectral features and study their relationships with the patient-reported outcomes. A number of strong and statistically significant dependencies were found, many having to do with activities of daily living and MS walking scale, leading to the conclusion that the disturbance in mid-swing to HS is specific to deterioration in physical functions. Spearman correlations coefficients and adjusted R2 obtained using stepwise linear regression models are reported. We conclude that event-specific gait features can be used to quantify the precise impact of MS symptoms on gait phases and identify markers of balance, stability, or fall risk, etc. We believe that this information supplements on-going MS research and could be used to develop personalized disease-modifying therapies and exercises.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多发性硬化症(MS)会中断大脑和身体其他部位之间的交流,导致功能恶化。步态障碍是多发性硬化症的常见发现,由几种神经症状引起。我们进行了一项特定事件的分析,以研究多发性硬化对步态成分的可变影响。我们的研究结果表明,一个步态周期的中间摆动到脚跟撞击(HS)阶段是最能说明运动问题的阶段。我们将Hilbert-Huang变换应用于该阶段对应的惯性步态数据,提取光谱特征并研究它们与患者报告结果的关系。我们发现了许多强的和统计上显著的依赖关系,许多与日常生活活动和MS步行规模有关,从而得出结论,在HS的摇摆中期的干扰是特定于身体功能的恶化。报道了采用逐步线性回归模型得到的Spearman相关系数和调整后的R2。我们的结论是,特定事件的步态特征可以用来量化MS症状对步态阶段的精确影响,并识别平衡、稳定或跌倒风险等标志。我们相信,这些信息补充了正在进行的MS研究,并可用于开发个性化的疾病改善疗法和锻炼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstrating the real-world significance of the mid-swing to heel strike part of the gait cycle using spectral features
Multiple sclerosis (MS) interrupts communication between the brain and other parts of the body causing functional deterioration. Gait impairment is a common finding in MS, one caused by several neurological symptoms. We perform an event-specific analysis to study the variable impact of MS on gait components. Our results show that the mid-swing to heel strike (HS) phase of a gait cycle is the most indicative of motor problems. We apply the Hilbert-Huang transform to inertial gait data, corresponding to this phase, to extract the spectral features and study their relationships with the patient-reported outcomes. A number of strong and statistically significant dependencies were found, many having to do with activities of daily living and MS walking scale, leading to the conclusion that the disturbance in mid-swing to HS is specific to deterioration in physical functions. Spearman correlations coefficients and adjusted R2 obtained using stepwise linear regression models are reported. We conclude that event-specific gait features can be used to quantify the precise impact of MS symptoms on gait phases and identify markers of balance, stability, or fall risk, etc. We believe that this information supplements on-going MS research and could be used to develop personalized disease-modifying therapies and exercises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1