使用K-means聚类识别在线意见领袖

S. Hudli, Aditi A. Hudli, Anand V. Hudli
{"title":"使用K-means聚类识别在线意见领袖","authors":"S. Hudli, Aditi A. Hudli, Anand V. Hudli","doi":"10.1109/ISDA.2012.6416574","DOIUrl":null,"url":null,"abstract":"Online opinion leaders play an important role in the dissemination of information in discussion forums. They are a high-priority target group for viral marketing campaigns. On an average, an opinion leader will tell about his or her experience with a product or company to 14 other people. It is important to identify such opinion leaders from data derived from online activity of users. We present an approach to identification of opinion leaders using the K-means clustering algorithm. This approach does not require knowledge of the user's opinions or membership in other forums.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Identifying online opinion leaders using K-means clustering\",\"authors\":\"S. Hudli, Aditi A. Hudli, Anand V. Hudli\",\"doi\":\"10.1109/ISDA.2012.6416574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online opinion leaders play an important role in the dissemination of information in discussion forums. They are a high-priority target group for viral marketing campaigns. On an average, an opinion leader will tell about his or her experience with a product or company to 14 other people. It is important to identify such opinion leaders from data derived from online activity of users. We present an approach to identification of opinion leaders using the K-means clustering algorithm. This approach does not require knowledge of the user's opinions or membership in other forums.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

网络意见领袖在论坛信息传播中发挥着重要作用。他们是病毒式营销活动的高优先级目标群体。平均而言,一个意见领袖会向14个人讲述他或她对一个产品或公司的体验。从来自用户在线活动的数据中确定意见领袖是很重要的。我们提出了一种使用k均值聚类算法识别意见领袖的方法。这种方法不需要了解用户的意见或其他论坛的会员资格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying online opinion leaders using K-means clustering
Online opinion leaders play an important role in the dissemination of information in discussion forums. They are a high-priority target group for viral marketing campaigns. On an average, an opinion leader will tell about his or her experience with a product or company to 14 other people. It is important to identify such opinion leaders from data derived from online activity of users. We present an approach to identification of opinion leaders using the K-means clustering algorithm. This approach does not require knowledge of the user's opinions or membership in other forums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1