差异私有规范分析

Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, R. Kaimal, S. Venkatesh
{"title":"差异私有规范分析","authors":"Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, R. Kaimal, S. Venkatesh","doi":"10.1109/ICDM.2018.00124","DOIUrl":null,"url":null,"abstract":"Privacy preservation is important. Prescriptive analytics is a method to extract corrective actions to avoid undesirable outcomes. We propose a privacy preserving prescriptive analytics algorithm to protect the data used during the construction of the prescriptive analytics algorithm. We use differential privacy mechanism to achieve strong privacy guarantee. Differential privacy mechanism requires computation of sensitivity: maximum change in the output between two training datasets, which is differed by only one instance. The main challenge we addressed is the computation of sensitivity of the prescription vector. In absence of any analytical form, we construct a nested global optimization problem to compute the sensitivity. We solve the optimization problem using constrained Bayesian optimization, as the nested structure makes the objective function expensive. We demonstrate our algorithm on two real world datasets and observe that the prescription vectors remains useful even after making them private.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differentially Private Prescriptive Analytics\",\"authors\":\"Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, R. Kaimal, S. Venkatesh\",\"doi\":\"10.1109/ICDM.2018.00124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy preservation is important. Prescriptive analytics is a method to extract corrective actions to avoid undesirable outcomes. We propose a privacy preserving prescriptive analytics algorithm to protect the data used during the construction of the prescriptive analytics algorithm. We use differential privacy mechanism to achieve strong privacy guarantee. Differential privacy mechanism requires computation of sensitivity: maximum change in the output between two training datasets, which is differed by only one instance. The main challenge we addressed is the computation of sensitivity of the prescription vector. In absence of any analytical form, we construct a nested global optimization problem to compute the sensitivity. We solve the optimization problem using constrained Bayesian optimization, as the nested structure makes the objective function expensive. We demonstrate our algorithm on two real world datasets and observe that the prescription vectors remains useful even after making them private.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

保护隐私很重要。规定性分析是一种提取纠正措施以避免不良结果的方法。我们提出了一种保护隐私的规定性分析算法,以保护规定性分析算法构建过程中使用的数据。采用差分隐私机制实现强隐私保障。差分隐私机制需要计算灵敏度:两个训练数据集之间输出的最大变化,只相差一个实例。我们解决的主要挑战是处方向量的灵敏度计算。在没有解析形式的情况下,构造了一个嵌套全局优化问题来计算灵敏度。由于嵌套结构使得目标函数昂贵,我们使用约束贝叶斯优化来解决优化问题。我们在两个真实世界的数据集上演示了我们的算法,并观察到即使将处方向量设置为私有,它们仍然有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentially Private Prescriptive Analytics
Privacy preservation is important. Prescriptive analytics is a method to extract corrective actions to avoid undesirable outcomes. We propose a privacy preserving prescriptive analytics algorithm to protect the data used during the construction of the prescriptive analytics algorithm. We use differential privacy mechanism to achieve strong privacy guarantee. Differential privacy mechanism requires computation of sensitivity: maximum change in the output between two training datasets, which is differed by only one instance. The main challenge we addressed is the computation of sensitivity of the prescription vector. In absence of any analytical form, we construct a nested global optimization problem to compute the sensitivity. We solve the optimization problem using constrained Bayesian optimization, as the nested structure makes the objective function expensive. We demonstrate our algorithm on two real world datasets and observe that the prescription vectors remains useful even after making them private.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1