利用PVSYST软件对埃及农业并网光伏系统进行设计与仿真

H. Farghally, Emad A. Sweelem, M. El-Sebah, F.A. Syam
{"title":"利用PVSYST软件对埃及农业并网光伏系统进行设计与仿真","authors":"H. Farghally, Emad A. Sweelem, M. El-Sebah, F.A. Syam","doi":"10.37394/23201.2022.21.33","DOIUrl":null,"url":null,"abstract":"Agricultural Photovoltaic Systems are a key technology to achieve sustainable development goals by reducing competition between land for food and electricity. In addition, Agricultural Photovoltaic Systems are at the heart of the link between power generation, crop production and irrigation water conservation. The main ecophysiological constraint on crop production under photovoltaics is the reduction of light. It is difficult to recommend shade tolerance for some plant varieties due to insufficient information on shading conditions for most plants. The use of shading panels (photovoltaic panels) requires more crop-specific research to determine the optimal percentage of panels and their placement that will not reduce agricultural yields. Crop yield variation versus field shading and availability to maximize the system require extensive research. This study aims to develop a standard procedure for designing an agricultural grid-connected photovoltaic power generation system for solar power generation in an agricultural area in Bahteem, Egypt. The technical and annual performance of the grid-connected PV system was simulated using PV Syst software. The paper started with a pre-feasibility study of a grid-connected photovoltaic system using PV Syst. Software with an extensive database of meteorological data, including global daily horizontal solar irradiance, and a database of various renewable energy system components from different manufacturers. In this work, a comprehensive literature review of agricultural solar photovoltaic systems is conducted, with a particular focus on grid-connected systems, followed by a design procedure for grid-connected solar photovoltaic systems. The planned photovoltaic system will generate a total of 400 KWp of electricity. This generated electricity can drive down electricity prices by exporting excess electricity to the national grid. In addition, solar power systems are fuel-efficient and have a low environmental impact.","PeriodicalId":376260,"journal":{"name":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Agricultural Grid Connected Photovoltaic System Design and Simulation in Egypt by using PVSYST Software\",\"authors\":\"H. Farghally, Emad A. Sweelem, M. El-Sebah, F.A. Syam\",\"doi\":\"10.37394/23201.2022.21.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural Photovoltaic Systems are a key technology to achieve sustainable development goals by reducing competition between land for food and electricity. In addition, Agricultural Photovoltaic Systems are at the heart of the link between power generation, crop production and irrigation water conservation. The main ecophysiological constraint on crop production under photovoltaics is the reduction of light. It is difficult to recommend shade tolerance for some plant varieties due to insufficient information on shading conditions for most plants. The use of shading panels (photovoltaic panels) requires more crop-specific research to determine the optimal percentage of panels and their placement that will not reduce agricultural yields. Crop yield variation versus field shading and availability to maximize the system require extensive research. This study aims to develop a standard procedure for designing an agricultural grid-connected photovoltaic power generation system for solar power generation in an agricultural area in Bahteem, Egypt. The technical and annual performance of the grid-connected PV system was simulated using PV Syst software. The paper started with a pre-feasibility study of a grid-connected photovoltaic system using PV Syst. Software with an extensive database of meteorological data, including global daily horizontal solar irradiance, and a database of various renewable energy system components from different manufacturers. In this work, a comprehensive literature review of agricultural solar photovoltaic systems is conducted, with a particular focus on grid-connected systems, followed by a design procedure for grid-connected solar photovoltaic systems. The planned photovoltaic system will generate a total of 400 KWp of electricity. This generated electricity can drive down electricity prices by exporting excess electricity to the national grid. In addition, solar power systems are fuel-efficient and have a low environmental impact.\",\"PeriodicalId\":376260,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23201.2022.21.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23201.2022.21.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

农业光伏系统是通过减少土地对粮食和电力的竞争来实现可持续发展目标的关键技术。此外,农业光伏系统是发电、作物生产和灌溉节水之间联系的核心。光照减少是制约作物生产的主要生理生态因素。由于大多数植物的遮荫条件信息不足,很难推荐某些植物品种的遮荫耐受性。使用遮阳板(光伏板)需要更多的针对特定作物的研究,以确定面板的最佳百分比及其放置位置,而不会降低农业产量。作物产量变化与田间遮阳和最大化系统可用性之间的关系需要广泛的研究。本研究旨在制定一套标准程序,用于设计埃及Bahteem农业地区太阳能发电的农业并网光伏发电系统。利用PV系统软件对并网光伏系统的技术性能和年度性能进行了仿真。本文从光伏系统并网光伏系统的预可行性研究入手。软件具有广泛的气象数据数据库,包括全球每日水平太阳辐照度,以及来自不同制造商的各种可再生能源系统组件的数据库。在这项工作中,对农业太阳能光伏系统进行了全面的文献综述,特别关注并网系统,然后是并网太阳能光伏系统的设计过程。计划中的光伏系统将产生总计400千瓦时的电力。产生的电力可以通过向国家电网输出多余的电力来降低电价。此外,太阳能发电系统燃料效率高,对环境影响小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agricultural Grid Connected Photovoltaic System Design and Simulation in Egypt by using PVSYST Software
Agricultural Photovoltaic Systems are a key technology to achieve sustainable development goals by reducing competition between land for food and electricity. In addition, Agricultural Photovoltaic Systems are at the heart of the link between power generation, crop production and irrigation water conservation. The main ecophysiological constraint on crop production under photovoltaics is the reduction of light. It is difficult to recommend shade tolerance for some plant varieties due to insufficient information on shading conditions for most plants. The use of shading panels (photovoltaic panels) requires more crop-specific research to determine the optimal percentage of panels and their placement that will not reduce agricultural yields. Crop yield variation versus field shading and availability to maximize the system require extensive research. This study aims to develop a standard procedure for designing an agricultural grid-connected photovoltaic power generation system for solar power generation in an agricultural area in Bahteem, Egypt. The technical and annual performance of the grid-connected PV system was simulated using PV Syst software. The paper started with a pre-feasibility study of a grid-connected photovoltaic system using PV Syst. Software with an extensive database of meteorological data, including global daily horizontal solar irradiance, and a database of various renewable energy system components from different manufacturers. In this work, a comprehensive literature review of agricultural solar photovoltaic systems is conducted, with a particular focus on grid-connected systems, followed by a design procedure for grid-connected solar photovoltaic systems. The planned photovoltaic system will generate a total of 400 KWp of electricity. This generated electricity can drive down electricity prices by exporting excess electricity to the national grid. In addition, solar power systems are fuel-efficient and have a low environmental impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
PCB Image Defects Detection by Artificial Neural Networks and Resistance Analysis Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Design of Low Power SAR ADC with Novel Regenerative Comparator Design and Construction of a Density-Controlled Traffic Light System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1