{"title":"调度太阳能光伏发电的电池与超级电容器混合储能系统成本优化","authors":"Pranoy Roy, Jiangbiao He, Y. Liao","doi":"10.1109/ECCE44975.2020.9235797","DOIUrl":null,"url":null,"abstract":"This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost Optimization of Battery and Supercapacitor Hybrid Energy Storage System for Dispatching Solar PV Power\",\"authors\":\"Pranoy Roy, Jiangbiao He, Y. Liao\",\"doi\":\"10.1109/ECCE44975.2020.9235797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.\",\"PeriodicalId\":433712,\"journal\":{\"name\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE44975.2020.9235797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost Optimization of Battery and Supercapacitor Hybrid Energy Storage System for Dispatching Solar PV Power
This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.