Friman Sánchez, M. Alvarez, E. Salamí, Alex Ramírez, M. Valero
{"title":"多媒体应用中一维和二维SIMD扩展的可扩展性","authors":"Friman Sánchez, M. Alvarez, E. Salamí, Alex Ramírez, M. Valero","doi":"10.1109/ISPASS.2005.1430571","DOIUrl":null,"url":null,"abstract":"SIMD extensions are the most common technique used in current processors for multimedia computing. In order to obtain more performance for emerging applications SIMD extensions need to be scaled. In this paper we perform a scalability analysis of SIMD extensions for multimedia applications. Scaling a 1-dimensional extension, like Intel MMX, was compared to scaling a 2-dimensional (matrix) extension. Evaluations have demonstrated that the 2-d architecture is able to use more parallel hardware than the 1-d extension. Speed-ups over a 2-way superscalar processor with MMX-like extension go up to 4X for kernels and up to 3.3X for complete applications and the matrix architecture can deliver, in some cases, more performance with simpler processor configurations. The experiments also show that the scaled matrix architecture is reaching the limits of the DLP available in the internal loops of common multimedia kernels","PeriodicalId":230669,"journal":{"name":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","volume":"1 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the Scalability of 1- and 2-Dimensional SIMD Extensions for Multimedia Applications\",\"authors\":\"Friman Sánchez, M. Alvarez, E. Salamí, Alex Ramírez, M. Valero\",\"doi\":\"10.1109/ISPASS.2005.1430571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIMD extensions are the most common technique used in current processors for multimedia computing. In order to obtain more performance for emerging applications SIMD extensions need to be scaled. In this paper we perform a scalability analysis of SIMD extensions for multimedia applications. Scaling a 1-dimensional extension, like Intel MMX, was compared to scaling a 2-dimensional (matrix) extension. Evaluations have demonstrated that the 2-d architecture is able to use more parallel hardware than the 1-d extension. Speed-ups over a 2-way superscalar processor with MMX-like extension go up to 4X for kernels and up to 3.3X for complete applications and the matrix architecture can deliver, in some cases, more performance with simpler processor configurations. The experiments also show that the scaled matrix architecture is reaching the limits of the DLP available in the internal loops of common multimedia kernels\",\"PeriodicalId\":230669,\"journal\":{\"name\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"volume\":\"1 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2005.1430571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2005.1430571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Scalability of 1- and 2-Dimensional SIMD Extensions for Multimedia Applications
SIMD extensions are the most common technique used in current processors for multimedia computing. In order to obtain more performance for emerging applications SIMD extensions need to be scaled. In this paper we perform a scalability analysis of SIMD extensions for multimedia applications. Scaling a 1-dimensional extension, like Intel MMX, was compared to scaling a 2-dimensional (matrix) extension. Evaluations have demonstrated that the 2-d architecture is able to use more parallel hardware than the 1-d extension. Speed-ups over a 2-way superscalar processor with MMX-like extension go up to 4X for kernels and up to 3.3X for complete applications and the matrix architecture can deliver, in some cases, more performance with simpler processor configurations. The experiments also show that the scaled matrix architecture is reaching the limits of the DLP available in the internal loops of common multimedia kernels