{"title":"高分辨率红外成像与三阶和频生成显微镜(会议报告)","authors":"E. Potma, A. Hanninen, Richard C. Prince","doi":"10.1117/12.2530523","DOIUrl":null,"url":null,"abstract":"We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5 μm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity.","PeriodicalId":295965,"journal":{"name":"Ultrafast Nonlinear Imaging and Spectroscopy VII","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution IR-based imaging with third-order sum-frequency generation microscopy (Conference Presentation)\",\"authors\":\"E. Potma, A. Hanninen, Richard C. Prince\",\"doi\":\"10.1117/12.2530523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5 μm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity.\",\"PeriodicalId\":295965,\"journal\":{\"name\":\"Ultrafast Nonlinear Imaging and Spectroscopy VII\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrafast Nonlinear Imaging and Spectroscopy VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2530523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrafast Nonlinear Imaging and Spectroscopy VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2530523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-resolution IR-based imaging with third-order sum-frequency generation microscopy (Conference Presentation)
We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5 μm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity.