{"title":"基于假设检验理论的FLD集成分类器理论模型","authors":"R. Cogranne, Tomáš Denemark, J. Fridrich","doi":"10.1109/WIFS.2014.7084322","DOIUrl":null,"url":null,"abstract":"The FLD ensemble classifier is a widely used machine learning tool for steganalysis of digital media due to its efficiency when working with high dimensional feature sets. This paper explains how this classifier can be formulated within the framework of optimal detection by using an accurate statistical model of base learners' projections and the hypothesis testing theory. A substantial advantage of this formulation is the ability to theoretically establish the test properties, including the probability of false alarm and the test power, and the flexibility to use other criteria of optimality than the conventional total probability of error. Numerical results on real images show the sharpness of the theoretically established results and the relevance of the proposed methodology.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Theoretical model of the FLD ensemble classifier based on hypothesis testing theory\",\"authors\":\"R. Cogranne, Tomáš Denemark, J. Fridrich\",\"doi\":\"10.1109/WIFS.2014.7084322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FLD ensemble classifier is a widely used machine learning tool for steganalysis of digital media due to its efficiency when working with high dimensional feature sets. This paper explains how this classifier can be formulated within the framework of optimal detection by using an accurate statistical model of base learners' projections and the hypothesis testing theory. A substantial advantage of this formulation is the ability to theoretically establish the test properties, including the probability of false alarm and the test power, and the flexibility to use other criteria of optimality than the conventional total probability of error. Numerical results on real images show the sharpness of the theoretically established results and the relevance of the proposed methodology.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical model of the FLD ensemble classifier based on hypothesis testing theory
The FLD ensemble classifier is a widely used machine learning tool for steganalysis of digital media due to its efficiency when working with high dimensional feature sets. This paper explains how this classifier can be formulated within the framework of optimal detection by using an accurate statistical model of base learners' projections and the hypothesis testing theory. A substantial advantage of this formulation is the ability to theoretically establish the test properties, including the probability of false alarm and the test power, and the flexibility to use other criteria of optimality than the conventional total probability of error. Numerical results on real images show the sharpness of the theoretically established results and the relevance of the proposed methodology.