{"title":"看,听,解码:多模态语音识别与图像","authors":"Felix Sun, David F. Harwath, James R. Glass","doi":"10.1109/SLT.2016.7846320","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a multimodal speech recognition scenario, in which an image provides contextual information for a spoken caption to be decoded. We investigate a lattice rescoring algorithm that integrates information from the image at two different points: the image is used to augment the language model with the most likely words, and to rescore the top hypotheses using a word-level RNN. This rescoring mechanism decreases the word error rate by 3 absolute percentage points, compared to a baseline speech recognizer operating with only the speech recording.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Look, listen, and decode: Multimodal speech recognition with images\",\"authors\":\"Felix Sun, David F. Harwath, James R. Glass\",\"doi\":\"10.1109/SLT.2016.7846320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a multimodal speech recognition scenario, in which an image provides contextual information for a spoken caption to be decoded. We investigate a lattice rescoring algorithm that integrates information from the image at two different points: the image is used to augment the language model with the most likely words, and to rescore the top hypotheses using a word-level RNN. This rescoring mechanism decreases the word error rate by 3 absolute percentage points, compared to a baseline speech recognizer operating with only the speech recording.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Look, listen, and decode: Multimodal speech recognition with images
In this paper, we introduce a multimodal speech recognition scenario, in which an image provides contextual information for a spoken caption to be decoded. We investigate a lattice rescoring algorithm that integrates information from the image at two different points: the image is used to augment the language model with the most likely words, and to rescore the top hypotheses using a word-level RNN. This rescoring mechanism decreases the word error rate by 3 absolute percentage points, compared to a baseline speech recognizer operating with only the speech recording.