基于结构信息的恶意软件远程判别学习,用于恶意软件自动分类

Deguang Kong, Guanhua Yan
{"title":"基于结构信息的恶意软件远程判别学习,用于恶意软件自动分类","authors":"Deguang Kong, Guanhua Yan","doi":"10.1145/2465529.2465531","DOIUrl":null,"url":null,"abstract":"In this work, we explore techniques that can automatically classify malware variants into their corresponding families. Our framework extracts structural information from malware programs as attributed function call graphs, further learns discriminant malware distance metrics, finally adopts an ensemble of classifiers for automated malware classification. Experimental results show that our method is able to achieve high classification accuracy.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Discriminant malware distance learning on structuralinformation for automated malware classification\",\"authors\":\"Deguang Kong, Guanhua Yan\",\"doi\":\"10.1145/2465529.2465531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore techniques that can automatically classify malware variants into their corresponding families. Our framework extracts structural information from malware programs as attributed function call graphs, further learns discriminant malware distance metrics, finally adopts an ensemble of classifiers for automated malware classification. Experimental results show that our method is able to achieve high classification accuracy.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

在这项工作中,我们探索了可以自动将恶意软件变体分类到相应家族的技术。该框架从恶意软件程序中提取结构信息作为属性函数调用图,进一步学习判别恶意软件距离度量,最后采用分类器集成实现恶意软件自动分类。实验结果表明,该方法具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminant malware distance learning on structuralinformation for automated malware classification
In this work, we explore techniques that can automatically classify malware variants into their corresponding families. Our framework extracts structural information from malware programs as attributed function call graphs, further learns discriminant malware distance metrics, finally adopts an ensemble of classifiers for automated malware classification. Experimental results show that our method is able to achieve high classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1