利用RFID和深度面部生物识别技术保护电子支付系统

Nadir Kamel Benamara, M. Keche, Murisi Wellington, Zhou Munyaradzi
{"title":"利用RFID和深度面部生物识别技术保护电子支付系统","authors":"Nadir Kamel Benamara, M. Keche, Murisi Wellington, Zhou Munyaradzi","doi":"10.1109/CAIDA51941.2021.9425175","DOIUrl":null,"url":null,"abstract":"Security is a major concern in Electronic Payment (E-Payment) systems. Usually, these systems are protected against illegal users, so-called hackers, by different means, such as Personal identification numbers (PINs), passwords, cards, etc. However, these hackers may manage to bypass this protection by having recourse to different strategies. Many techniques have been proposed to counter hacking attempts; however, there are still situations where an illegal user may succeed to access the E-payment system easily by stealing from a legal user its payment card. The use of Artificial Intelligence methods for face authentication, like deep learning, has made facial biometry a highly developing and accurate technology, especially in the past decade. In this paper, we propose the joint use of deep learning-based facial biometry and RFID cards to reinforce the security of an E-Payment system. By doing so, we ensure that a user should be physically present carrying his RFID card to be able to access the E-Payment system. We have tested three deep learning-based face authentication models and validated them on MUCT and CASIA Face-V5 datasets, to choose the most suitable one for our proposed secured E-Payment system, obtaining top verification rates of 99.90% and 99.26%, respectively. Two versions of this system are proposed; in the first version, which is based on a Personnel Computer (PC) and a Raspberry card, face authentication is implemented in a PC and the control of the RFID reader is performed by a Raspberry Pi 3, whereas in the second version, which may be considered as an embedded system, all the job is accomplished by the Raspberry Pi.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Securing E-payment Systems by RFID and Deep Facial Biometry\",\"authors\":\"Nadir Kamel Benamara, M. Keche, Murisi Wellington, Zhou Munyaradzi\",\"doi\":\"10.1109/CAIDA51941.2021.9425175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security is a major concern in Electronic Payment (E-Payment) systems. Usually, these systems are protected against illegal users, so-called hackers, by different means, such as Personal identification numbers (PINs), passwords, cards, etc. However, these hackers may manage to bypass this protection by having recourse to different strategies. Many techniques have been proposed to counter hacking attempts; however, there are still situations where an illegal user may succeed to access the E-payment system easily by stealing from a legal user its payment card. The use of Artificial Intelligence methods for face authentication, like deep learning, has made facial biometry a highly developing and accurate technology, especially in the past decade. In this paper, we propose the joint use of deep learning-based facial biometry and RFID cards to reinforce the security of an E-Payment system. By doing so, we ensure that a user should be physically present carrying his RFID card to be able to access the E-Payment system. We have tested three deep learning-based face authentication models and validated them on MUCT and CASIA Face-V5 datasets, to choose the most suitable one for our proposed secured E-Payment system, obtaining top verification rates of 99.90% and 99.26%, respectively. Two versions of this system are proposed; in the first version, which is based on a Personnel Computer (PC) and a Raspberry card, face authentication is implemented in a PC and the control of the RFID reader is performed by a Raspberry Pi 3, whereas in the second version, which may be considered as an embedded system, all the job is accomplished by the Raspberry Pi.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

安全性是电子支付(E-Payment)系统的主要关注点。通常,这些系统通过不同的方式来防止非法用户,即所谓的黑客,例如个人识别号码(pin)、密码、卡片等。然而,这些黑客可能会通过采取不同的策略来绕过这种保护。人们提出了许多技术来对抗黑客攻击;然而,仍有非法使用者可以透过盗取合法使用者的支付卡,轻易进入电子支付系统的情况。人工智能方法在人脸认证中的应用,如深度学习,使得面部生物识别技术成为一项高度发展和精确的技术,尤其是在过去的十年里。在本文中,我们建议联合使用基于深度学习的面部生物识别和RFID卡来加强电子支付系统的安全性。通过这样做,我们确保用户必须亲自携带RFID卡,以便能够访问电子支付系统。我们测试了三种基于深度学习的人脸认证模型,并在MUCT和CASIA face - v5数据集上对它们进行了验证,以选择最适合我们所提出的安全电子支付系统的模型,最高验证率分别为99.90%和99.26%。提出了该系统的两个版本;在第一个版本中,基于个人电脑(PC)和树莓卡,人脸认证在PC上实现,RFID读取器的控制由树莓派3完成,而在第二个版本中,可以认为是一个嵌入式系统,所有的工作都由树莓派完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Securing E-payment Systems by RFID and Deep Facial Biometry
Security is a major concern in Electronic Payment (E-Payment) systems. Usually, these systems are protected against illegal users, so-called hackers, by different means, such as Personal identification numbers (PINs), passwords, cards, etc. However, these hackers may manage to bypass this protection by having recourse to different strategies. Many techniques have been proposed to counter hacking attempts; however, there are still situations where an illegal user may succeed to access the E-payment system easily by stealing from a legal user its payment card. The use of Artificial Intelligence methods for face authentication, like deep learning, has made facial biometry a highly developing and accurate technology, especially in the past decade. In this paper, we propose the joint use of deep learning-based facial biometry and RFID cards to reinforce the security of an E-Payment system. By doing so, we ensure that a user should be physically present carrying his RFID card to be able to access the E-Payment system. We have tested three deep learning-based face authentication models and validated them on MUCT and CASIA Face-V5 datasets, to choose the most suitable one for our proposed secured E-Payment system, obtaining top verification rates of 99.90% and 99.26%, respectively. Two versions of this system are proposed; in the first version, which is based on a Personnel Computer (PC) and a Raspberry card, face authentication is implemented in a PC and the control of the RFID reader is performed by a Raspberry Pi 3, whereas in the second version, which may be considered as an embedded system, all the job is accomplished by the Raspberry Pi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1