在纹理缓存架构中预取

Homan Igehy, Matthew Eldridge, Kekoa Proudfoot
{"title":"在纹理缓存架构中预取","authors":"Homan Igehy, Matthew Eldridge, Kekoa Proudfoot","doi":"10.1145/285305.285321","DOIUrl":null,"url":null,"abstract":"Texture mapping has become so ubiquitous in real-time graphics hardware that many systems are able to perform filtered texturing without any penalty in fill rate. The computation rates available in hardware have been outpacing the memory access rates, and texture systems are becoming constrained by memory bandwidth and latency. Caching in conjunction with prefetching can be used to alleviate this problem. In this paper, WC introduce a prefetching texture cache architecture designed to take advantage of the access characteristics of texture mapping. The structures needed are relatively simple and arc amenable to high clock rates. To quantify the robustness of our architecture, we identify a set of six scenes whose texture locality varies over nearly two orders of magnitude and a set 01 four memory systems with varying bandwidths and latencies. Through the use of a cycle-accurate simulation, we demonstrate that even in the presence of a high-latency memory system, our architecture can attain at least 97% of the performance of a zerolatency memory system. CR","PeriodicalId":298241,"journal":{"name":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Prefetching in a texture cache architecture\",\"authors\":\"Homan Igehy, Matthew Eldridge, Kekoa Proudfoot\",\"doi\":\"10.1145/285305.285321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture mapping has become so ubiquitous in real-time graphics hardware that many systems are able to perform filtered texturing without any penalty in fill rate. The computation rates available in hardware have been outpacing the memory access rates, and texture systems are becoming constrained by memory bandwidth and latency. Caching in conjunction with prefetching can be used to alleviate this problem. In this paper, WC introduce a prefetching texture cache architecture designed to take advantage of the access characteristics of texture mapping. The structures needed are relatively simple and arc amenable to high clock rates. To quantify the robustness of our architecture, we identify a set of six scenes whose texture locality varies over nearly two orders of magnitude and a set 01 four memory systems with varying bandwidths and latencies. Through the use of a cycle-accurate simulation, we demonstrate that even in the presence of a high-latency memory system, our architecture can attain at least 97% of the performance of a zerolatency memory system. CR\",\"PeriodicalId\":298241,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/285305.285321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/285305.285321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

摘要

纹理映射在实时图形硬件中变得如此普遍,以至于许多系统能够在没有任何填充率损失的情况下执行过滤纹理。硬件中可用的计算速率已经超过了内存访问速率,纹理系统受到内存带宽和延迟的限制。将缓存与预取结合使用可以缓解这个问题。本文介绍了一种利用纹理映射的访问特性设计的预取纹理缓存架构。所需的结构相对简单,可以适应高时钟速率。为了量化我们架构的稳健性,我们确定了一组六个场景,其纹理局域性变化近两个数量级,以及一组01个具有不同带宽和延迟的存储系统。通过使用周期精确的模拟,我们证明了即使在高延迟内存系统存在的情况下,我们的架构也可以达到至少97%的零延迟内存系统的性能。CR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prefetching in a texture cache architecture
Texture mapping has become so ubiquitous in real-time graphics hardware that many systems are able to perform filtered texturing without any penalty in fill rate. The computation rates available in hardware have been outpacing the memory access rates, and texture systems are becoming constrained by memory bandwidth and latency. Caching in conjunction with prefetching can be used to alleviate this problem. In this paper, WC introduce a prefetching texture cache architecture designed to take advantage of the access characteristics of texture mapping. The structures needed are relatively simple and arc amenable to high clock rates. To quantify the robustness of our architecture, we identify a set of six scenes whose texture locality varies over nearly two orders of magnitude and a set 01 four memory systems with varying bandwidths and latencies. Through the use of a cycle-accurate simulation, we demonstrate that even in the presence of a high-latency memory system, our architecture can attain at least 97% of the performance of a zerolatency memory system. CR
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tiled polygon traversal using half-plane edge functions Hybrid sort-first and sort-last parallel rendering with a cluster of PCs Towards interactive bump mapping with anisotropic shift-variant BRDFs The RACE II engine for real-time volume rendering Single-pass full-screen hardware accelerated antialiasing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1