基于多特征融合的自适应KCF跟踪

De-Quan Guo, Sheng-Gui Ling, Peng Sheng, Hong-Yu Yang, L. Hong
{"title":"基于多特征融合的自适应KCF跟踪","authors":"De-Quan Guo, Sheng-Gui Ling, Peng Sheng, Hong-Yu Yang, L. Hong","doi":"10.1109/icvrv.2017.00059","DOIUrl":null,"url":null,"abstract":"To tackle the problem of target scale changed, too monotonous target feature, or track cumulative errors in Kernelized correlation filters(KCF), the paper proposes a self-adaptive KCF tracking algorithm employed multi-feature fusion. KCF tracking algorithm is improved based on location prediction, multi-feature fusion and bilinear interpolation. Among them, to facilitate better representation of the target's appearance model, make target tracking more robust, the multi-feature fusion is integrated (Hue Saturation Value, HSV) color features, grayscale features and improved (Histogram of Oriented Gradient, HOG) features. Both qualitative and quantitative evaluations on some object tracking benchmark show that the proposed tracking method achieves superior performance compared with other state-of-the-art methods.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive KCF Tracking Via Multi-feature Fusion\",\"authors\":\"De-Quan Guo, Sheng-Gui Ling, Peng Sheng, Hong-Yu Yang, L. Hong\",\"doi\":\"10.1109/icvrv.2017.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To tackle the problem of target scale changed, too monotonous target feature, or track cumulative errors in Kernelized correlation filters(KCF), the paper proposes a self-adaptive KCF tracking algorithm employed multi-feature fusion. KCF tracking algorithm is improved based on location prediction, multi-feature fusion and bilinear interpolation. Among them, to facilitate better representation of the target's appearance model, make target tracking more robust, the multi-feature fusion is integrated (Hue Saturation Value, HSV) color features, grayscale features and improved (Histogram of Oriented Gradient, HOG) features. Both qualitative and quantitative evaluations on some object tracking benchmark show that the proposed tracking method achieves superior performance compared with other state-of-the-art methods.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icvrv.2017.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icvrv.2017.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对核化相关滤波器(KCF)中目标尺度变化、目标特征过于单调、跟踪误差累积等问题,提出了一种采用多特征融合的自适应KCF跟踪算法。基于位置预测、多特征融合和双线性插值对KCF跟踪算法进行了改进。其中,为了更好地表征目标的外观模型,使目标跟踪更加鲁棒,多特征融合融合了(Hue Saturation Value, HSV)颜色特征、灰度特征和改进的(Histogram of Oriented Gradient, HOG)特征。在一些目标跟踪基准上进行了定性和定量的评价,结果表明该方法的跟踪性能优于其他先进的跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive KCF Tracking Via Multi-feature Fusion
To tackle the problem of target scale changed, too monotonous target feature, or track cumulative errors in Kernelized correlation filters(KCF), the paper proposes a self-adaptive KCF tracking algorithm employed multi-feature fusion. KCF tracking algorithm is improved based on location prediction, multi-feature fusion and bilinear interpolation. Among them, to facilitate better representation of the target's appearance model, make target tracking more robust, the multi-feature fusion is integrated (Hue Saturation Value, HSV) color features, grayscale features and improved (Histogram of Oriented Gradient, HOG) features. Both qualitative and quantitative evaluations on some object tracking benchmark show that the proposed tracking method achieves superior performance compared with other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1