语音和单音歌唱分割使用音高参数

X. Sarasola, E. Navas, David Tavarez, Luis Serrano, I. Saratxaga
{"title":"语音和单音歌唱分割使用音高参数","authors":"X. Sarasola, E. Navas, David Tavarez, Luis Serrano, I. Saratxaga","doi":"10.21437/IBERSPEECH.2018-31","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method for automatic segmentation of speech and monophonic singing voice based only on two parameters derived from pitch: proportion of voiced segments and percentage of pitch labelled as a musical note. First, voice is located in audio files using a GMM-HMM based VAD and pitch is calculated. Using the pitch curve, automatic musical note labelling is made applying stable value sequence search. Then pitch features extracted from each voice island are classified with Support Vector Machines. Our corpus consists in recordings of live sung poetry sessions where audio files contain both singing and speech voices. The proposed system has been compared with other speech/singing discrimination systems with good results.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speech and monophonic singing segmentation using pitch parameters\",\"authors\":\"X. Sarasola, E. Navas, David Tavarez, Luis Serrano, I. Saratxaga\",\"doi\":\"10.21437/IBERSPEECH.2018-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel method for automatic segmentation of speech and monophonic singing voice based only on two parameters derived from pitch: proportion of voiced segments and percentage of pitch labelled as a musical note. First, voice is located in audio files using a GMM-HMM based VAD and pitch is calculated. Using the pitch curve, automatic musical note labelling is made applying stable value sequence search. Then pitch features extracted from each voice island are classified with Support Vector Machines. Our corpus consists in recordings of live sung poetry sessions where audio files contain both singing and speech voices. The proposed system has been compared with other speech/singing discrimination systems with good results.\",\"PeriodicalId\":115963,\"journal\":{\"name\":\"IberSPEECH Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IberSPEECH Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/IBERSPEECH.2018-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于两个参数的语音和单音歌声自动分割的新方法:浊音段的比例和标记为音符的音高百分比。首先,使用基于GMM-HMM的VAD将声音定位到音频文件中,并计算音调。利用音高曲线,应用稳定值序列搜索实现音符自动标注。然后利用支持向量机对每个语音岛提取的音高特征进行分类。我们的语料库包括现场歌唱诗歌会议的录音,其中音频文件包含唱歌和说话的声音。该系统已与其他语音/歌唱识别系统进行了比较,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech and monophonic singing segmentation using pitch parameters
In this paper we present a novel method for automatic segmentation of speech and monophonic singing voice based only on two parameters derived from pitch: proportion of voiced segments and percentage of pitch labelled as a musical note. First, voice is located in audio files using a GMM-HMM based VAD and pitch is calculated. Using the pitch curve, automatic musical note labelling is made applying stable value sequence search. Then pitch features extracted from each voice island are classified with Support Vector Machines. Our corpus consists in recordings of live sung poetry sessions where audio files contain both singing and speech voices. The proposed system has been compared with other speech/singing discrimination systems with good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1