M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae
{"title":"基于加权局部二值模式的面部表情识别","authors":"M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae","doi":"10.1109/ICCITECHN.2010.5723877","DOIUrl":null,"url":null,"abstract":"We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facial expression recognition based on a weighted Local Binary Pattern\",\"authors\":\"M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae\",\"doi\":\"10.1109/ICCITECHN.2010.5723877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial expression recognition based on a weighted Local Binary Pattern
We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.