基于多元倾斜t背景模型的高光谱异常检测

K. Kayabol, Ensar Burak Aytekin, Sertaç Arisoy, E. Kuruoğlu
{"title":"基于多元倾斜t背景模型的高光谱异常检测","authors":"K. Kayabol, Ensar Burak Aytekin, Sertaç Arisoy, E. Kuruoğlu","doi":"10.1109/SIU55565.2022.9864954","DOIUrl":null,"url":null,"abstract":"In this paper, autoencoder-based multivariate skewed t-distribution is proposed for hyperspectral anomaly detection. In the proposed method, the reconstruction error between the hyperspectral images reconstructed by the autoencoder and the original hyperspectral images is calculated and is modeled with a multivariate skewed t-distribution. The parameters of the distribution are estimated using the variational Bayes approach, and a distribution-based rule is determined for anomaly detection. The experimental results show that the proposed method has better performance when compared to the RX, LRASR and DAEAD anomaly detection methods.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Anomaly Detection with Multivariate Skewed t Background Model\",\"authors\":\"K. Kayabol, Ensar Burak Aytekin, Sertaç Arisoy, E. Kuruoğlu\",\"doi\":\"10.1109/SIU55565.2022.9864954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, autoencoder-based multivariate skewed t-distribution is proposed for hyperspectral anomaly detection. In the proposed method, the reconstruction error between the hyperspectral images reconstructed by the autoencoder and the original hyperspectral images is calculated and is modeled with a multivariate skewed t-distribution. The parameters of the distribution are estimated using the variational Bayes approach, and a distribution-based rule is determined for anomaly detection. The experimental results show that the proposed method has better performance when compared to the RX, LRASR and DAEAD anomaly detection methods.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自编码器的多元偏态t分布的高光谱异常检测方法。该方法计算了自编码器重建的高光谱图像与原始高光谱图像之间的重构误差,并采用多元偏态t分布建模。利用变分贝叶斯方法估计分布参数,确定基于分布的异常检测规则。实验结果表明,与RX、LRASR和DAEAD异常检测方法相比,该方法具有更好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral Anomaly Detection with Multivariate Skewed t Background Model
In this paper, autoencoder-based multivariate skewed t-distribution is proposed for hyperspectral anomaly detection. In the proposed method, the reconstruction error between the hyperspectral images reconstructed by the autoencoder and the original hyperspectral images is calculated and is modeled with a multivariate skewed t-distribution. The parameters of the distribution are estimated using the variational Bayes approach, and a distribution-based rule is determined for anomaly detection. The experimental results show that the proposed method has better performance when compared to the RX, LRASR and DAEAD anomaly detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1