基于低水平眼图像特征的凝视方向识别

PETMEI '11 Pub Date : 2011-09-18 DOI:10.1145/2029956.2029961
Yanxia Zhang, A. Bulling, Hans-Werner Gellersen
{"title":"基于低水平眼图像特征的凝视方向识别","authors":"Yanxia Zhang, A. Bulling, Hans-Werner Gellersen","doi":"10.1145/2029956.2029961","DOIUrl":null,"url":null,"abstract":"In mobile daily life settings, video-based gaze tracking faces challenges associated with changes in lighting conditions and artefacts in the video images caused by head and body movements. These challenges call for the development of new methods that are robust to such influences. In this paper we investigate the problem of gaze estimation, more specifically how to discriminate different gaze directions from eye images. In a 17 participant user study we record eye images for 13 different gaze directions from a standard webcam. We extract a total of 50 features from these images that encode information on color, intensity and orientations. Using mRMR feature selection and a k-nearest neighbor (kNN) classifier we show that we can estimate these gaze directions with a mean recognition performance of 86%.","PeriodicalId":405392,"journal":{"name":"PETMEI '11","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Discrimination of gaze directions using low-level eye image features\",\"authors\":\"Yanxia Zhang, A. Bulling, Hans-Werner Gellersen\",\"doi\":\"10.1145/2029956.2029961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mobile daily life settings, video-based gaze tracking faces challenges associated with changes in lighting conditions and artefacts in the video images caused by head and body movements. These challenges call for the development of new methods that are robust to such influences. In this paper we investigate the problem of gaze estimation, more specifically how to discriminate different gaze directions from eye images. In a 17 participant user study we record eye images for 13 different gaze directions from a standard webcam. We extract a total of 50 features from these images that encode information on color, intensity and orientations. Using mRMR feature selection and a k-nearest neighbor (kNN) classifier we show that we can estimate these gaze directions with a mean recognition performance of 86%.\",\"PeriodicalId\":405392,\"journal\":{\"name\":\"PETMEI '11\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PETMEI '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2029956.2029961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PETMEI '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2029956.2029961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在移动的日常生活环境中,基于视频的凝视跟踪面临着与照明条件变化和头部和身体运动引起的视频图像中的伪影相关的挑战。面对这些挑战,需要开发能够抵御这些影响的新方法。在本文中,我们研究了注视估计问题,更具体地说,是如何从眼睛图像中区分不同的注视方向。在一项17名参与者的用户研究中,我们记录了来自标准网络摄像头的13种不同凝视方向的眼睛图像。我们从这些图像中提取了总共50个特征,这些特征编码了颜色、强度和方向信息。使用mRMR特征选择和k-最近邻(kNN)分类器,我们可以估计这些凝视方向,平均识别性能为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrimination of gaze directions using low-level eye image features
In mobile daily life settings, video-based gaze tracking faces challenges associated with changes in lighting conditions and artefacts in the video images caused by head and body movements. These challenges call for the development of new methods that are robust to such influences. In this paper we investigate the problem of gaze estimation, more specifically how to discriminate different gaze directions from eye images. In a 17 participant user study we record eye images for 13 different gaze directions from a standard webcam. We extract a total of 50 features from these images that encode information on color, intensity and orientations. Using mRMR feature selection and a k-nearest neighbor (kNN) classifier we show that we can estimate these gaze directions with a mean recognition performance of 86%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Saliency-based image editing for guiding visual attention Implementing gaze control for peripheral devices Eye tracking over small and large shopping displays Speed-accuracy trade-off in dwell-based eye pointing tasks at different cognitive levels The research framework of eye-tracking based mobile device usability evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1