基于柔性可穿戴天线的脑遥测在身/离体传播信道初步研究

Mariella Särestöniemi, K. Sayrafian-Pour, M. Sonkki, J. Iinatti
{"title":"基于柔性可穿戴天线的脑遥测在身/离体传播信道初步研究","authors":"Mariella Särestöniemi, K. Sayrafian-Pour, M. Sonkki, J. Iinatti","doi":"10.1109/ISMICT58261.2023.10152221","DOIUrl":null,"url":null,"abstract":"Flexible electronics are envisioned to play a major role in future wearable medical devices. An important component of this technology is flexible antennas. This paper presents a preliminary study of on-body and off-body propagation channels in Body Area Networks (BAN) using a small Ultra WideBand (UWB) flexible wearable antenna. The research is carried out with physical measurements in an anechoic chamber and a small laboratory room. The on-body measurements include propagation channels between two wearable devices placed on the head and various locations on the arm (i.e., shoulder to wrist). The off-body measurements cover propagation channels between a head-mounted device and an external device placed at various distances from the body. The wearable devices in these measurements use a small flexible antenna that can easily conform to the surface of the body. The measurements are conducted to better understand and characterize the wireless communication channels in applications such as brain monitoring or brain computer interface. The measurement results show that the UWB flexible antenna presented here performs well for both on-body and off-body communication channels.","PeriodicalId":332729,"journal":{"name":"2023 IEEE 17th International Symposium on Medical Information and Communication Technology (ISMICT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Preliminary Study of On/Off-Body Propagation Channels for Brain Telemetry Using a Flexible Wearable Antenna\",\"authors\":\"Mariella Särestöniemi, K. Sayrafian-Pour, M. Sonkki, J. Iinatti\",\"doi\":\"10.1109/ISMICT58261.2023.10152221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible electronics are envisioned to play a major role in future wearable medical devices. An important component of this technology is flexible antennas. This paper presents a preliminary study of on-body and off-body propagation channels in Body Area Networks (BAN) using a small Ultra WideBand (UWB) flexible wearable antenna. The research is carried out with physical measurements in an anechoic chamber and a small laboratory room. The on-body measurements include propagation channels between two wearable devices placed on the head and various locations on the arm (i.e., shoulder to wrist). The off-body measurements cover propagation channels between a head-mounted device and an external device placed at various distances from the body. The wearable devices in these measurements use a small flexible antenna that can easily conform to the surface of the body. The measurements are conducted to better understand and characterize the wireless communication channels in applications such as brain monitoring or brain computer interface. The measurement results show that the UWB flexible antenna presented here performs well for both on-body and off-body communication channels.\",\"PeriodicalId\":332729,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMICT58261.2023.10152221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Medical Information and Communication Technology (ISMICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMICT58261.2023.10152221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预计柔性电子产品将在未来可穿戴医疗设备中发挥重要作用。该技术的一个重要组成部分是柔性天线。本文利用小型超宽带可穿戴柔性天线对体域网络(BAN)中的体上和体外传播信道进行了初步研究。这项研究是在一个消声室和一个小实验室里进行的物理测量。身体上的测量包括放置在头部的两个可穿戴设备和手臂上不同位置(即肩膀到手腕)之间的传播通道。离体测量包括头戴式设备和放置在离身体不同距离的外部设备之间的传播通道。这些测量中的可穿戴设备使用一个小的柔性天线,可以很容易地贴合身体表面。这些测量是为了更好地理解和表征脑监测或脑机接口等应用中的无线通信信道。测量结果表明,所设计的超宽带柔性天线在体上和体外通信信道上都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Preliminary Study of On/Off-Body Propagation Channels for Brain Telemetry Using a Flexible Wearable Antenna
Flexible electronics are envisioned to play a major role in future wearable medical devices. An important component of this technology is flexible antennas. This paper presents a preliminary study of on-body and off-body propagation channels in Body Area Networks (BAN) using a small Ultra WideBand (UWB) flexible wearable antenna. The research is carried out with physical measurements in an anechoic chamber and a small laboratory room. The on-body measurements include propagation channels between two wearable devices placed on the head and various locations on the arm (i.e., shoulder to wrist). The off-body measurements cover propagation channels between a head-mounted device and an external device placed at various distances from the body. The wearable devices in these measurements use a small flexible antenna that can easily conform to the surface of the body. The measurements are conducted to better understand and characterize the wireless communication channels in applications such as brain monitoring or brain computer interface. The measurement results show that the UWB flexible antenna presented here performs well for both on-body and off-body communication channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Received Power via RIS in Near Field LOS Channels Hybrid Smartwatch Multi-factor Authentication Comparison of IR-UWB Radar SoC for Non-Contact Biomedical Application Recent Progress in ETSI TC SmartBAN Standardization Real-Time Mastitis Detection in Livestock using Deep Learning and Machine Learning Leveraging Edge Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1