Jaya Tata Hardinata, Harly Okprana, Agus Perdana Windarto, Widodo Saputra
{"title":"Analisis Laju Pembelajaran dalam Mengklasifikasi Data Wine Menggunakan Algoritma Backpropagation","authors":"Jaya Tata Hardinata, Harly Okprana, Agus Perdana Windarto, Widodo Saputra","doi":"10.30645/J-SAKTI.V3I2.161","DOIUrl":null,"url":null,"abstract":"Backpropagation is an artificial neural network that has the architecture in conducting training and determining the right parameters to produce the correct output of similar but not the same input. One of the parameters that influences the determination of bacpropagation architecture is the rate of learning, where if the value of the learning rate is too high then the network architecture becomes unstable otherwise if the value of the learning rate is too low the network architecture converges and takes a long time in training network architecture. This research data is secondary data sourced from UCI Data Mechine Learning. The best network architecture in this study is 13-10-3, with different learning rates ranging from 0.01, 0.03, 0.06, 0.01, 0.13, 0.16, 0.2, 0.23, 0.026, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9. From the 21 different learning rate values in the 13-10-3 network architecture, it is found that the level of learning rate is very important to get the right and fast network architecture. This can be seen in experiments with a learning rate of 0.65 can produce a better level of accuracy compared to a learning rate smaller than 0.65.","PeriodicalId":402811,"journal":{"name":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/J-SAKTI.V3I2.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反向传播是一种人工神经网络,它具有进行训练和确定正确参数以产生相似但不相同输入的正确输出的架构。影响反向传播体系结构确定的参数之一是学习率,如果学习率的值过高,则网络体系结构变得不稳定;如果学习率的值过低,则网络体系结构收敛,并且在训练网络体系结构时需要很长时间。本研究数据是来自UCI数据机器学习的辅助数据。本研究的最佳网络结构为13-10-3,其学习率为0.01、0.03、0.06、0.01、0.13、0.16、0.2、0.23、0.026、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.9。从13-10-3网络体系结构的21个不同的学习率值中发现,学习率的高低对于得到正确、快速的网络体系结构是非常重要的。这可以在实验中看到,与小于0.65的学习率相比,0.65的学习率可以产生更好的准确性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Laju Pembelajaran dalam Mengklasifikasi Data Wine Menggunakan Algoritma Backpropagation
Backpropagation is an artificial neural network that has the architecture in conducting training and determining the right parameters to produce the correct output of similar but not the same input. One of the parameters that influences the determination of bacpropagation architecture is the rate of learning, where if the value of the learning rate is too high then the network architecture becomes unstable otherwise if the value of the learning rate is too low the network architecture converges and takes a long time in training network architecture. This research data is secondary data sourced from UCI Data Mechine Learning. The best network architecture in this study is 13-10-3, with different learning rates ranging from 0.01, 0.03, 0.06, 0.01, 0.13, 0.16, 0.2, 0.23, 0.026, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9. From the 21 different learning rate values in the 13-10-3 network architecture, it is found that the level of learning rate is very important to get the right and fast network architecture. This can be seen in experiments with a learning rate of 0.65 can produce a better level of accuracy compared to a learning rate smaller than 0.65.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rancang Bangun Pengatur Suhu Dan Kelembaban Ruang Server Berbasis IoT Pengelompokkan Data Pembelian Tinta Dengan Menggunakan Metode K-Means Pengembangan Model Sistem Pendukung Keputusan Dengan Kombinasi Metode Fuzzy Tahani Dan Topsis Dalam Penilaian Kinerja Instruktur Sistem Monitoring Lulusan Perguruan Tinggi Dalam Memasuki Dunia Kerja Menggunakan Tracer Study Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1