使用互动式开放式学习者模型解释基于需求的教育建议

Jordan Barria-Pineda, Kamil Akhuseyinoglu, Peter Brusilovsky
{"title":"使用互动式开放式学习者模型解释基于需求的教育建议","authors":"Jordan Barria-Pineda, Kamil Akhuseyinoglu, Peter Brusilovsky","doi":"10.1145/3314183.3323463","DOIUrl":null,"url":null,"abstract":"Students might pursue different goals throughout their learning process. For example, they might be seeking new material to expand their current level of knowledge, repeating content of prior classes to prepare for an exam, or working on addressing their most recent misconceptions. Multiple potential goals require an adaptive e-learning system to recommend learning content appropriate for students' intent and to explain this recommendation in the context of this goal. In our prior work, we explored explainable recommendations for the most typical 'knowledge expansion goal\". In this paper, we focus on students' immediate needs to remedy misunderstandings when they solve programming problems. We generate learning content recommendations to target the concepts with which students have struggled more recently. At the same time, we produce explanations for this recommendation goal in order to support students' understanding of why certain learning activities are recommended. The paper provides an overview of the design of this explainable educational recommender system and describes its ongoing evaluation","PeriodicalId":240482,"journal":{"name":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Explaining Need-based Educational Recommendations Using Interactive Open Learner Models\",\"authors\":\"Jordan Barria-Pineda, Kamil Akhuseyinoglu, Peter Brusilovsky\",\"doi\":\"10.1145/3314183.3323463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Students might pursue different goals throughout their learning process. For example, they might be seeking new material to expand their current level of knowledge, repeating content of prior classes to prepare for an exam, or working on addressing their most recent misconceptions. Multiple potential goals require an adaptive e-learning system to recommend learning content appropriate for students' intent and to explain this recommendation in the context of this goal. In our prior work, we explored explainable recommendations for the most typical 'knowledge expansion goal\\\". In this paper, we focus on students' immediate needs to remedy misunderstandings when they solve programming problems. We generate learning content recommendations to target the concepts with which students have struggled more recently. At the same time, we produce explanations for this recommendation goal in order to support students' understanding of why certain learning activities are recommended. The paper provides an overview of the design of this explainable educational recommender system and describes its ongoing evaluation\",\"PeriodicalId\":240482,\"journal\":{\"name\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314183.3323463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314183.3323463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

学生在整个学习过程中可能会追求不同的目标。例如,他们可能会寻找新的材料来扩展他们目前的知识水平,重复以前课程的内容来准备考试,或者努力解决他们最近的误解。多个潜在的目标需要一个自适应的电子学习系统来推荐适合学生意图的学习内容,并在这个目标的上下文中解释这个建议。在我们之前的工作中,我们探索了最典型的“知识扩展目标”的可解释建议。在本文中,我们关注学生在解决编程问题时纠正误解的直接需求。我们生成学习内容建议,以针对学生最近挣扎的概念。同时,我们对这个推荐目标进行了解释,以支持学生理解为什么推荐某些学习活动。本文概述了这种可解释的教育推荐系统的设计,并描述了其正在进行的评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explaining Need-based Educational Recommendations Using Interactive Open Learner Models
Students might pursue different goals throughout their learning process. For example, they might be seeking new material to expand their current level of knowledge, repeating content of prior classes to prepare for an exam, or working on addressing their most recent misconceptions. Multiple potential goals require an adaptive e-learning system to recommend learning content appropriate for students' intent and to explain this recommendation in the context of this goal. In our prior work, we explored explainable recommendations for the most typical 'knowledge expansion goal". In this paper, we focus on students' immediate needs to remedy misunderstandings when they solve programming problems. We generate learning content recommendations to target the concepts with which students have struggled more recently. At the same time, we produce explanations for this recommendation goal in order to support students' understanding of why certain learning activities are recommended. The paper provides an overview of the design of this explainable educational recommender system and describes its ongoing evaluation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping the Reaction: Community Characteristics and Emotional Tone of Citizen Responses to Robotics Videos at TED versus YouTube Supporting the Exploration of Cultural Heritage Information via Search Behavior Analysis Exer-model: A User Model for Scrutinising Long-term Models of Physical Activity from Multiple Sensors NEAR: A Partner to Explain Any Factorised Recommender System Tikkoun Sofrim: A WebApp for Personalization and Adaptation of Crowdsourcing Transcriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1